ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantify Influence of Delay in Opinion Transmission of Opinion Leaders on COVID-19 Information Propagation in the Chinese Sina-microblog

215   0   0.0 ( 0 )
 نشر من قبل Fulian Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a fast evolving major public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information can be posted sequentially in a social media platform. The interval between subsequent posting times may have different impact on the transmission and cross-propagation of the old and new information to result in different peak value and final size of forwarding users of the new information, depending on the content correlation and whether the new information is posted during the outbreak or quasi steady state phase of the old information. To help in designing effective communication strategies to ensure information is delivered to the maximal number of users, we develop and analyze two classes of susceptible-forwarding-immune information propagation models with delay in transmission, to describe the cross-propagation process of relevant information. We parametrize these models using real data from the Sina-Microblog and use the parametrized models to define and evaluate mutual attractiveness indices, and we use these indices and parameter sensitivity analyses to inform strategies to ensure optimal strategies for a new information to be effectively propagated in the microblog.



قيم البحث

اقرأ أيضاً

The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dy namics in social networks. Due to its capability of handling a wider variety of uncertainties and ambiguities associated with evidence, we use the framework of Dempster-Shafer (DS) theory to capture the opinion of an agent. We then examine the consensus among agents in dynamic networks in which an agent can utilize either a cautious or receptive updating strategy. In particular, we examine the case of bounded confidence updating where an agent exchanges its opinion only with neighboring nodes possessing similar evidence. In a fusion network, this captures the case in which nodes only update their state based on evidence consistent with the nodes own evidence. In opinion dynamics, this captures the notions of Social Judgment Theory (SJT) in which agents update their opinions only with other agents possessing opinions closer to their own. Focusing on the two special DS theoretic cases where an agent state is modeled as a Dirichlet body of evidence and a probability mass function (p.m.f.), we utilize results from matrix theory, graph theory, and networks to prove the existence of consensus agent states in several time-varying network cases of interest. For example, we show the existence of a consensus in which a subset of network nodes achieves a consensus that is adopted by follower network nodes. Of particular interest is the case of multiple opinion leaders, where we show that the agents do not reach a consensus in general, but rather converge to opinion clusters. Simulation results are provided to illustrate the main results.
We analyse a Singapore-based COVID-19 Telegram group with more than 10,000 participants. First, we study the groups opinion over time, focusing on four dimensions: participation, sentiment, topics, and psychological features. We find that engagement peaked when the Ministry of Health raised the disease alert level, but this engagement was not sustained. Second, we search for government-identified misinformation in the group. We find that government-identified misinformation is rare, and that messages discussing these pieces of misinformation express skepticism.
53 - Siwar Jendoubi 2019
The Viral Marketing is a relatively new form of marketing that exploits social networks to promote a brand, a product, etc. The idea behind it is to find a set of influencers on the network that can trigger a large cascade of propagation and adoption s. In this paper, we will introduce an evidential opinion-based influence maximization model for viral marketing. Besides, our approach tackles three opinions based scenarios for viral marketing in the real world. The first scenario concerns influencers who have a positive opinion about the product. The second scenario deals with influencers who have a positive opinion about the product and produce effects on users who also have a positive opinion. The third scenario involves influence users who have a positive opinion about the product and produce effects on the negative opinion of other users concerning the product in question. Next, we proposed six influence measures, two for each scenario. We also use an influence maximization model that the set of detected influencers for each scenario. Finally, we show the performance of the proposed model with each influence measure through some experiments conducted on a generated dataset and a real world dataset collected from Twitter.
356 - Siwar Jendoubi 2016
In this paper, we propose a new data based model for influence maximization in online social networks. We use the theory of belief functions to overcome the data imperfection problem. Besides, the proposed model searches to detect influencer users th at adopt a positive opinion about the product, the idea, etc, to be propagated. Moreover, we present some experiments to show the performance of our model.
COVID-19 has impacted all lives. To maintain social distancing and avoiding exposure, works and lives have gradually moved online. Under this trend, social media usage to obtain COVID-19 news has increased. Also, misinformation on COVID-19 is frequen tly spread on social media. In this work, we develop CHECKED, the first Chinese dataset on COVID-19 misinformation. CHECKED provides a total 2,104 verified microblogs related to COVID-19 from December 2019 to August 2020, identified by using a specific list of keywords. Correspondingly, CHECKED includes 1,868,175 reposts, 1,185,702 comments, and 56,852,736 likes that reveal how these verified microblogs are spread and reacted on Weibo. The dataset contains a rich set of multimedia information for each microblog including ground-truth label, textual, visual, temporal, and network information. Extensive experiments have been conducted to analyze CHECKED data and to provide benchmark results for well-established methods when predicting fake news using CHECKED. We hope that CHECKED can facilitate studies that target misinformation on coronavirus. The dataset is available at https://github.com/cyang03/CHECKED.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا