ﻻ يوجد ملخص باللغة العربية
Spatial symmetries of quantum systems leads to important effects in spectroscopy, such as selection rules and dark states. Motivated by the increasing strength of light-matter interaction achieved in recent experiments, we investigate a set of dynamically-generalized symmetries for quantum systems, which are subject to a strong periodic driving. Based on Floquet response theory, we study rotational, particle-hole, chiral and time-reversal symmetries and their signatures in spectroscopy, including symmetry-protected dark states (spDS), a Floquet band selection rule (FBSR), and symmetry-induced transparency (siT). Specifically, a dynamical rotational symmetry establishes dark state conditions, as well as selection rules for inelastic light scattering processes; a particle-hole symmetry introduces dark states for symmetry related Floquet states and also a transparency effect at quasienergy crossings; chiral symmetry and time-reversal symmetry alone do not imply dark state conditions, but can be combined to the particle-hole symmetry. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime, important for superconducting qubits, atoms and molecules in optical or plasmonic field cavities, and optomechanical systems.
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence ca
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynami
Studies of periodically driven one-dimensional many-body systems have advanced our understanding of complex systems and stimulated promising developments in quantum simulation. It is hence of interest to go one step further, by investigating the topo
Periodically driven quantum systems, known as Floquet systems, have been a focus of non-equilibrium physics in recent years, thanks to their rich dynamics. Not only time-periodic systems exhibit symmetries similar to those in spatially periodic syste
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum $L$. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the har