ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement order parameters and critical behavior for topological phase transitions and beyond

158   0   0.0 ( 0 )
 نشر من قبل Norbert Schuch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological phases are exotic quantum phases which are lacking the characterization in terms of order parameters. In this paper, we develop a unified framework based on variational iPEPS for the quantitative study of both topological and conventional phase transitions through entanglement order parameters. To this end, we employ tensor networks with suitable physical and/or entanglement symmetries encoded, and allow for order parameters detecting the behavior of any of those symmetries, both physical and entanglement ones. First, this gives rise to entanglement-based order parameters for topological phases. These topological order parameters allow to quantitatively probe topological phase transitions and to identify their universal behavior. We apply our framework to the study of the Toric Code model in different magnetic fields, which in some cases maps to the (2+1)D Ising model. We identify 3D Ising critical exponents for the entire transition, consistent with those special cases and general belief. However, we moreover find an unknown critical exponent beta=0.021. We then apply our framework of entanglement order parameters to conventional phase transitions. We construct a novel type of disorder operator (or disorder parameter), which is non-zero in the disordered phase and measures the response of the wavefunction to a symmetry twist in the entanglement. We numerically evaluate this disorder operator for the (2+1)D transverse field Ising model, where we again recover a critical exponent hitherto unknown in the model, beta=0.024, consistent with the findings for the Toric Code. This shows that entanglement order parameters can provide additional means of characterizing the universal data both at topological and conventional phase transitions, and altogether demonstrates the power of this framework to identify the universal data underlying the transition.



قيم البحث

اقرأ أيضاً

Topological insulators and topological superconductors display various topological phases that are characterized by different Chern numbers or by gapless edge states. In this work we show that various quantum information methods such as the von Neuma nn entropy, entanglement spectrum, fidelity, and fidelity spectrum may be used to detect and distinguish topological phases and their transitions. As an example we consider a two-dimensional $p$-wave superconductor, with Rashba spin-orbit coupling and a Zeeman term. The nature of the phases and their changes are clarified by the eigenvectors of the $k$-space reduced density matrix. We show that in the topologically nontrivial phases the highest weight eigenvector is fully aligned with the triplet pairing state. A signature of the various phase transitions between two points on the parameter space is encoded in the $k$-space fidelity operator.
We study quantized non-local order parameters, constructed by using partial time-reversal and partial reflection, for fermionic topological phases of matter in one spatial dimension protected by an orientation reversing symmetry, using topological qu antum field theories (TQFTs). By formulating the order parameters in the Hilbert space of state sum TQFT, we establish the connection between the quantized non-local order parameters and the underlying field theory, clarifying the nature of the order parameters as topological invariants. We also formulate several entanglement measures including the entanglement negativity on state sum spin TQFT, and describe the exact correspondence of the entanglement measures to path integrals on a closed surface equipped with a specific spin structure.
We investigate the scaling of the Renyi $alpha$-entropies in one-dimensional gapped quantum spin models. We show that the block entropies with $alpha > 2$ violate the area law monotonicity and exhibit damped oscillations. Depending on the existence o f a factorized ground state, the oscillatory behavior occurs either below factorization or it extends indefinitely. The anomalous scaling corresponds to an entanglement-driven order that is independent of ground-state degeneracy and is revealed by a nonlocal order parameter defined as the sum of the single-copy entanglement over all blocks.
The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These an yons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $mathbb{Z}_2$ quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.
The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the natu re of these transitions and how can we characterize them? The usual Landau approach, with the concept of an order parameter that is finite in a symmetry broken phase is not useful in this context. Topological transitions do not imply a change of symmetry and there is no obvious order parameter. A crucial observation is that they are associated with a diverging length that allows a scaling approach and to introduce critical exponents which define their universality classes. At zero temperature the critical exponents obey a quantum hyperscaling relation. We study finite size effects at topological transitions and show they exhibit universal behavior due to scaling. We discuss the possibility that they become discontinuous as a consequence of these effects and point out the relevance of our study for real systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا