ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse PCA: Algorithms, Adversarial Perturbations and Certificates

126   0   0.0 ( 0 )
 نشر من قبل Gleb Novikov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study efficient algorithms for Sparse PCA in standard statistical models (spiked covariance in its Wishart form). Our goal is to achieve optimal recovery guarantees while being resilient to small perturbations. Despite a long history of prior works, including explicit studies of perturbation resilience, the best known algorithmic guarantees for Sparse PCA are fragile and break down under small adversarial perturbations. We observe a basic connection between perturbation resilience and emph{certifying algorithms} that are based on certificates of upper bounds on sparse eigenvalues of random matrices. In contrast to other techniques, such certifying algorithms, including the brute-force maximum likelihood estimator, are automatically robust against small adversarial perturbation. We use this connection to obtain the first polynomial-time algorithms for this problem that are resilient against additive adversarial perturbations by obtaining new efficient certificates for upper bounds on sparse eigenvalues of random matrices. Our algorithms are based either on basic semidefinite programming or on its low-degree sum-of-squares strengthening depending on the parameter regimes. Their guarantees either match or approach the best known guarantees of emph{fragile} algorithms in terms of sparsity of the unknown vector, number of samples and the ambient dimension. To complement our algorithmic results, we prove rigorous lower bounds matching the gap between fragile and robust polynomial-time algorithms in a natural computational model based on low-degree polynomials (closely related to the pseudo-calibration technique for sum-of-squares lower bounds) that is known to capture the best known guarantees for related statistical estimation problems. The combination of these results provides formal evidence of an inherent price to pay to achieve robustness.



قيم البحث

اقرأ أيضاً

We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. These components can be comput ed one by one, repeatedly solving the single-component problem and deflating the input data matrix, but as we show this greedy procedure is suboptimal. We present a novel algorithm for sparse PCA that jointly optimizes multiple disjoint components. The extracted features capture variance that lies within a multiplicative factor arbitrarily close to 1 from the optimal. Our algorithm is combinatorial and computes the desired components by solving multiple instances of the bipartite maximum weight matching problem. Its complexity grows as a low order polynomial in the ambient dimension of the input data matrix, but exponentially in its rank. However, it can be effectively applied on a low-dimensional sketch of the data; this allows us to obtain polynomial-time approximation guarantees via spectral bounds. We evaluate our algorithm on real data-sets and empirically demonstrate that in many cases it outperforms existing, deflation-based approaches.
In this paper, we introduce adversarially robust streaming algorithms for central machine learning and algorithmic tasks, such as regression and clustering, as well as their more general counterparts, subspace embedding, low-rank approximation, and c oreset construction. For regression and other numerical linear algebra related tasks, we consider the row arrival streaming model. Our results are based on a simple, but powerful, observation that many importance sampling-based algorithms give rise to adversarial robustness which is in contrast to sketching based algorithms, which are very prevalent in the streaming literature but suffer from adversarial attacks. In addition, we show that the well-known merge and reduce paradigm in streaming is adversarially robust. Since the merge and reduce paradigm allows coreset constructions in the streaming setting, we thus obtain robust algorithms for $k$-means, $k$-median, $k$-center, Bregman clustering, projective clustering, principal component analysis (PCA) and non-negative matrix factorization. To the best of our knowledge, these are the first adversarially robust results for these problems yet require no new algorithmic implementations. Finally, we empirically confirm the robustness of our algorithms on various adversarial attacks and demonstrate that by contrast, some common existing algorithms are not robust. (Abstract shortened to meet arXiv limits)
We study a variant of the sparse PCA (principal component analysis) problem in the hard regime, where the inference task is possible yet no polynomial-time algorithm is known to exist. Prior work, based on the low-degree likelihood ratio, has conject ured a precise expression for the best possible (sub-exponential) runtime throughout the hard regime. Following instead a statistical physics inspired point of view, we show bounds on the depth of free energy wells for various Gibbs measures naturally associated to the problem. These free energy wells imply hitting time lower bounds that corroborate the low-degree conjecture: we show that a class of natural MCMC (Markov chain Monte Carlo) methods (with worst-case initialization) cannot solve sparse PCA with less than the conjectured runtime. These lower bounds apply to a wide range of values for two tuning parameters: temperature and sparsity misparametrization. Finally, we prove that the Overlap Gap Property (OGP), a structural property that implies failure of certain local search algorithms, holds in a significant part of the hard regime.
We present an algorithm for strongly refuting smoothed instances of all Boolean CSPs. The smoothed model is a hybrid between worst and average-case input models, where the input is an arbitrary instance of the CSP with only the negation patterns of t he literals re-randomized with some small probability. For an $n$-variable smoothed instance of a $k$-arity CSP, our algorithm runs in $n^{O(ell)}$ time, and succeeds with high probability in bounding the optimum fraction of satisfiable constraints away from $1$, provided that the number of constraints is at least $tilde{O}(n) (frac{n}{ell})^{frac{k}{2} - 1}$. This matches, up to polylogarithmic factors in $n$, the trade-off between running time and the number of constraints of the state-of-the-art algorithms for refuting fully random instances of CSPs [RRS17]. We also make a surprising new connection between our algorithm and even covers in hypergraphs, which we use to positively resolve Feiges 2008 conjecture, an extremal combinatorics conjecture on the existence of even covers in sufficiently dense hypergraphs that generalizes the well-known Moore bound for the girth of graphs. As a corollary, we show that polynomial-size refutation witnesses exist for arbitrary smoothed CSP instances with number of constraints a polynomial factor below the spectral threshold of $n^{k/2}$, extending the celebrated result for random 3-SAT of Feige, Kim and Ofek [FKO06].
Convolutional neural networks or standard CNNs (StdCNNs) are translation-equivariant models that achieve translation invariance when trained on data augmented with sufficient translations. Recent work on equivariant models for a given group of transf ormations (e.g., rotations) has lead to group-equivariant convolutional neural networks (GCNNs). GCNNs trained on data augmented with sufficient rotations achieve rotation invariance. Recent work by authors arXiv:2002.11318 studies a trade-off between invariance and robustness to adversarial attacks. In another related work arXiv:2005.08632, given any model and any input-dependent attack that satisfies a certain spectral property, the authors propose a universalization technique called SVD-Universal to produce a universal adversarial perturbation by looking at very few test examples. In this paper, we study the effectiveness of SVD-Universal on GCNNs as they gain rotation invariance through higher degree of training augmentation. We empirically observe that as GCNNs gain rotation invariance through training augmented with larger rotations, the fooling rate of SVD-Universal gets better. To understand this phenomenon, we introduce universal invariant directions and study their relation to the universal adversarial direction produced by SVD-Universal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا