ترغب بنشر مسار تعليمي؟ اضغط هنا

PBW parametrizations and generalized preprojective algebras

172   0   0.0 ( 0 )
 نشر من قبل Kota Murakami
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Kota Murakami




اسأل ChatGPT حول البحث

Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a notion of generalized preprojective algebra associated with a generalized Cartan matrix and its symmetrizer. This class of algebra realizes a crystal structure on the set of maximal dimensional irreducible components of the nilpotent variety [Selecta Math. (N.S.) 24 (2018)]. For general finite types, we give stratifications of these components via partial orders of torsion classes in module categories of generalized preprojective algebras in terms of Weyl groups. In addition, we realize Mirkovic-Vilonen polytopes from generic modules of these components, and give a identification as crystals between the set of Mirkovic-Vilonen polytopes and the set of maximal dimensional irreducible components except for type $mathsf{G}_2$. This generalizes results of Baumann-Kamnitzer [Represent. Theory 16 (2012)] and Baumann-Kamnitzer-Tingley [Publ. Math. Inst. Hautes Etudes Sci. 120 (2014)].



قيم البحث

اقرأ أيضاً

203 - Ryo Fujita , Kota Murakami 2021
We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiss-Leclerc-Schr{o}er~[Invent.~math. ~{bf{209}} (2017)]. As an application, we compute the first extension groups between the generic kernels introduced by Hernandez-Leclerc~[J.~Eur.~Math.~Soc.~{bf 18} (2016)], and propose a conjecture that their dimensions coincide with the pole orders of the normalized $R$-matrices between the corresponding Kirillov-Reshetikhin modules.
122 - Kota Murakami 2019
For a symmetrizable GCM $C$ and its symmetrizer $D$, Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a generalized preprojective algebra $Pi$ associated to $C$ and $D$, that contains a class of modules, called locally free modules. We show that any basic support $tau$-tilting $Pi$-module is locally free and gives a classification theorem of torsion-free classes in $operatorname{mathbf{rep}}{Pi}$ as the generalization of the work of Mizuno [Math. Z. 277 (2014)].
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfr ak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $Lambda$ and $Lambda^infty$ introduced by the authors. We next define the reflections $mathcal{S}_k$ and $mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp. complete) duality datum, then $mathcal{S}_k(D)$ and $mathcal{S}_k^{-1}(D)$ are also strong (resp. complete ) duality data. We finally introduce the notion of affine cuspidal modules in $mathcal{C}_{mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.
322 - Travis Schedler 2016
We determine the Z-module structure of the preprojective algebra and its zeroth Hochschild homology, for any non-Dynkin quiver (and hence the structure working over any base commutative ring, of any characteristic). This answers (and generalizes) a c onjecture of Hesselholt and Rains, producing new $p$-torsion classes in degrees 2p^l, l >= 1, We relate these classes by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncommutative Witt theory. An important tool is a generalization of the Diamond Lemma to modules over commutative rings, which we give in the appendix. In the previous version, additional results are included, such as: the Poisson center of $text{Sym } HH_0(Pi)$ for all quivers, the BV algebra structure on Hochschild cohomology, including how the Lie algebra structure $HH_0(Pi_Q)$ naturally arises from it, and the cyclic homology groups of $Pi_Q$.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D }}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $mathcal{D}$ to provide the functor $mathcal{F}_{mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $mathcal{C}^0_{mathfrak{g}}$, and show that all simple modules in $mathcal{C}^0_{mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا