ﻻ يوجد ملخص باللغة العربية
The electronic structure of LiNiO$_2$, a promising Li-ion battery cathode material, has remained a challenge to understand due to its highly covalent yet correlated nature. Here we elucidate the electronic structure in LiNiO$_2$ and the related compound NaNiO$_2$ using x-ray absorption spectra (XAS) and quantum many-body calculations. Notably, we use inverse partial fluorescence yield to correctly measure the Ni $L$-edge XAS, which is inaccurate using conventional methods. We show that the XAS are indicative of a strong Jahn-Teller effect in NaNiO$_2$ and a bond disproportionated state in LiNiO$_2$, supporting a theory of a high-entropy, glassy disproportionated state that stabilizes charging cycles in LiNiO$_2$.
We demonstrate a new method of x-ray absorption spectroscopy (XAS) that is bulk sensitive, like traditional fluorescence yield measurements, but is not affected by self-absorption or saturation effects. This measure of XAS is achieved by scanning the
We present an x-ray absorption study of the dependence of the V oxidation state on the thickness of LaVO$_3$ (LVO) and capping LaAlO$_3$ (LAO) layers in the multilayer structure of LVO sandwiched between LAO. We found that the change of the valence o
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1)
We present a detailed analysis of resonant inelastic scattering (RIXS) from Fe$_{1.087}$Te with unprecedented energy resolution. In contrast to the sharp peaks typically seen in insulating systems at the transition metal $L_3$ edge, we observe spectr