ﻻ يوجد ملخص باللغة العربية
We investigate the nonequilibrium dynamics following a quench to zero temperature of the non-conserved Ising model with power-law decaying long-range interactions $propto 1/r^{d+sigma}$ in $d=2$ spatial dimensions. The zero-temperature coarsening is always of special interest among nonequilibrium processes, because often peculiar behavior is observed. We provide estimates of the nonequilibrium exponents, viz., the growth exponent $alpha$, the persistence exponent $theta$, and the fractal dimension $d_f$. It is found that the growth exponent $alphaapprox 3/4$ is independent of $sigma$ and different from $alpha=1/2$ as expected for nearest-neighbor models. In the large $sigma$ regime of the tunable interactions only the fractal dimension $d_f$ of the nearest-neighbor Ising model is recovered, while the other exponents differ significantly. For the persistence exponent $theta$ this is a direct consequence of the different growth exponents $alpha$ as can be understood from the relation $d-d_f=theta/alpha$; they just differ by the ratio of the growth exponents $approx 3/2$. This relation has been proposed for annihilation processes and later numerically tested for the $d=2$ nearest-neighbor Ising model. We confirm this relation for all $sigma$ studied, reinforcing its general validity.
The critical behaviour of statistical models with long-range interactions exhibits distinct regimes as a function of $rho$, the power of the interaction strength decay. For $rho$ large enough, $rho>rho_{rm sr}$, the critical behaviour is observed to
In this note we study metastability phenomena for a class of long-range Ising models in one-dimension. We prove that, under suitable general conditions, the configuration -1 is the only metastable state and we estimate the mean exit time. Moreover, w
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the