ﻻ يوجد ملخص باللغة العربية
A large class of two-dimensional dilaton-gravity theories in asymptotically AdS$_2$ spacetimes are holographically dual to a matrix integral, interpreted as an ensemble average over Hamiltonians. Viewing these theories as Jackiw-Teitelboim gravity with a gas of defects, we extend this duality to a broader class of dilaton potentials compared to previous work by including conical defects with small deficit angles. In order to do this we show that these theories are equal to the large $p$ limit of a natural deformation of the $(2,p)$ minimal string theory.
Motivated by the BPS/CFT correspondence, we explore the similarities between the classical $beta$-deformed Hermitean matrix model and the $q$-deformed matrix models associated to 3d $mathcal{N}=2$ supersymmetric gauge theories on $D^2times_{q}S^1$ an
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat
General properties of a class of two-dimensional dilaton gravity (DG) theories with multi-exponential potentials are studied and a subclass of these theories, in which the equations of motion reduce to Toda and Liouville equations, is treated in deta
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a spec
We reanalyze and expand upon models proposed in 2015 for linear dilaton black holes, and use them to test several speculative ideas about black hole physics. We examine ideas based on the definition of quantum extremal surfaces in quantum field theor