ترغب بنشر مسار تعليمي؟ اضغط هنا

Football tracking networks: Beyond event-based connectivity

81   0   0.0 ( 0 )
 نشر من قبل Javier Buldu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose using Network Science as a complementary tool to analyze player and team behavior during a football match. Specifically, we introduce four kinds of networks based on different ways of interaction between players. Our approachs main novelty is to use tracking datasets to create football tracking networks, instead of constructing and analyzing the traditional networks based on events. In this way, we are able to capture player interactions that go beyond passes and introduce the concepts of (a) Ball Flow Networks, (b) Marking Networks, (c) Signed Proximity Networks and (d) Functional Coordination Networks. After defining the methodology for creating each kind of network, we show some examples using tracking datasets from four different matches of LaLiga Santander. Finally, we discuss some of the applications, limitations, and further improvements of football tracking networks.



قيم البحث

اقرأ أيضاً

With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purp ose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.
Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social i nfluence is static and they fail to capture the dynamics of influence in reality. In this work, we address the dynamic influence challenge by designing efficient streaming methods that can identify influential nodes from highly dynamic node interaction streams. We first propose a general time-decaying dynamic interaction network (TDN) model to model node interaction streams with the ability to smoothly discard outdated data. Based on the TDN model, we design three algorithms, i.e., SieveADN, BasicReduction, and HistApprox. SieveADN identifies influential nodes from a special kind of TDNs with efficiency. BasicReduction uses SieveADN as a basic building block to identify influential nodes from general TDNs. HistApprox significantly improves the efficiency of BasicReduction. More importantly, we theoretically show that all three algorithms enjoy constant factor approximation guarantees. Experiments conducted on various real interaction datasets demonstrate that our approach finds near-optimal solutions with speed at least $5$ to $15$ times faster than baseline methods.
This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio n is employed to approximate the discrete valued infected degree distribution evolution by a deterministic ordinary differential equation for obtaining a generative model for the infection diffusion. The infected degree distribution is shown to follow polynomial dynamics and is estimated using an exact non- linear Bayesian filter. We compute posterior Cramer-Rao bounds to obtain the fundamental limits of the filter which depend on the structure of the network. Considering the time-varying nature of the real world networks, the relationship between the diffusion thresholds and the degree distribution is investigated using generative models for real world networks. In addition, we validate the efficacy of our method with the diffusion data from a real-world online social system, Twitter. We find that SIS model is a good fit for the information diffusion and the non-linear filter effectively tracks the information diffusion.
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 cite{xu2016}), we measure the contribution of a path in link prediction with information entro py. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.
108 - Jingfei Zhang , Yuguo Chen 2018
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one typ e of nodes, very few community detection techniques have been developed for heterogeneous networks. In this paper, we propose a modularity based community detection framework for heterogeneous networks. Unlike existing methods, the proposed approach has the flexibility to treat the number of communities as an unknown quantity. We describe a Louvain type maximization method for finding the community structure that maximizes the modularity function. Our simulation results show the advantages of the proposed method over existing methods. Moreover, the proposed modularity function is shown to be consistent under a heterogeneous stochastic blockmodel framework. Analyses of the DBLP four-area dataset and a MovieLens dataset demonstrate the usefulness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا