ﻻ يوجد ملخص باللغة العربية
We propose using Network Science as a complementary tool to analyze player and team behavior during a football match. Specifically, we introduce four kinds of networks based on different ways of interaction between players. Our approachs main novelty is to use tracking datasets to create football tracking networks, instead of constructing and analyzing the traditional networks based on events. In this way, we are able to capture player interactions that go beyond passes and introduce the concepts of (a) Ball Flow Networks, (b) Marking Networks, (c) Signed Proximity Networks and (d) Functional Coordination Networks. After defining the methodology for creating each kind of network, we show some examples using tracking datasets from four different matches of LaLiga Santander. Finally, we discuss some of the applications, limitations, and further improvements of football tracking networks.
With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purp
Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social i
This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 cite{xu2016}), we measure the contribution of a path in link prediction with information entro
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one typ