ﻻ يوجد ملخص باللغة العربية
We perform a population synthesis of protoplanetary discs including infall with a total of $50,000$ simulations using a 1D vertically integrated viscous evolution code, studying a large parameter space in final stellar mass. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of $sim 0.3$ and $0.1,mathrm{M_odot}$ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems with final stellar mass $sim 1,mathrm{M_odot}$, we find disc masses of $sim 0.7,mathrm{M_odot}$ for the `hydro case and $sim 0.2,mathrm{M_odot}$ for the `MHD case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, $approx 5-7,mathrm{Myr}$ on average, despite our choice of a high value of $10^{-2}$ for the background viscosity $alpha$-parameter. In addition, fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation is suppressed entirely.
It is widely known that giant planets have the capacity to open deep gaps in their natal gaseous protoplanetary discs. It is unclear, however, how gas accretion onto growing planets influences the shape and depth of their growing gaps. We performed i
Many theoretical studies have shown that external photoevaporation from massive stars can severely truncate, or destroy altogether, the gaseous protoplanetary discs around young stars. In tandem, several observational studies report a correlation bet
Spatially resolving the immediate surroundings of young stars is a key challenge for the planet formation community. SPHERE on the VLT represents an important step forward by increasing the opportunities offered by optical or near-infrared imaging in
In previous laboratory experiments, we measured the temperature dependence of sticking forces between micrometer grains of chondritic composition. The data showed a decrease in surface energy by a factor ~5 with increasing temperature. Here, we focus
Young solar-type stars are known to be strong X-ray emitters and their X-ray spectra have been widely studied. X-rays from the central star may play a crucial role in the thermodynamics and chemistry of the circumstellar material as well as in the at