ترغب بنشر مسار تعليمي؟ اضغط هنا

Vital role of anisotropy in cubic chiral skyrmion hosts

69   0   0.0 ( 0 )
 نشر من قبل Markus Prei{\\ss}nger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The impact of magnetic anisotropy on the skyrmion lattice (SkL) state in cubic chiral magnets has been overlooked for long, partly because a semi-quantitative description of the thermodynamically stable SkL phase pocket forming near the Curie temperature could be achieved without invoking anisotropy effects. However, there has been a range of phenomena reported recently in these materials, such as the formation of low-temperature tilted conical and SkL states as well as temperature-induced transformations of lattice geometry in metastable SkL states, where anisotropy was suspected to play a key role. To settle this issue on experimental basis, we quantified the cubic anisotropy in a series of CoZnMn-type cubic chiral magnets. We found that the strength of anisotropy is highly enhanced towards low temperatures in all the compounds, moreover, not only the magnitude but also the character of cubic anisotropy drastically varies upon changing the Co/Mn ratio. We correlate these changes with temperature- and composition-induced variations of the helical modulation vectors, the anharmonicity and structural rearrangements of the metastable SkLs and the spin relaxation rates. Similar systematic studies on magnetic anisotropy may not only pave the way for a quantitative and unified description of the stable and metastable modulated spin textures in cubic chiral magnets but would also help exploring further topological spin textures in this large class of skyrmion hosts.



قيم البحث

اقرأ أيضاً

This paper reports on magnetometry and magnetoresistance measurements of MnSi epilayers performed in out-of-plane magnetic fields. We present a theoretical analysis of the chiral modulations that arise in confined cubic helimagnets where the uniaxial anisotropy axis and magnetic field are both out-of-plane. In contrast to in-plane field measurements (Wilson et al., Phys. Rev. B 86, 144420 (2012)), the hard-axis uniaxial anisotropy in MnSi/Si(111) increases the energy of (111)-oriented skyrmions and in-plane helicoids relative to the cone phase, and makes the cone phase the only stable magnetic texture below the saturation field. While induced uniaxial anisotropy is important in stabilizing skyrmion lattices and helicoids in other confined cubic helimagnets, the particular anisotropy in MnSi/Si(111) entirely suppresses these states in an out-of-plane magnetic field. However, it is predicted that isolated skyrmions with enlarged sizes exist in MnSi/Si(111) epilayers in a broad range of out-of-plane magnetic fields.
Magnetic skyrmions are vortex-like topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a $beta$-Mn-type chiral structure host skyrmions above room temperatur e. In this system, it has recently been found that skyrmions persist over a wide temperature and magnetic field region as a long-lived metastable state, and that the skyrmion lattice transforms from a triangular lattice to a square one. To obtain perspective on chiral magnetism in Co-Zn-Mn alloys and clarify how various properties related to the skyrmion vary with the composition, we performed systematic studies on Co$_{10}$Zn$_{10}$, Co$_9$Zn$_9$Mn$_2$, Co$_8$Zn$_8$Mn$_4$ and Co$_7$Zn$_7$Mn$_6$ in terms of magnetic susceptibility and small-angle neutron scattering measurements. The robust metastable skyrmions with extremely long lifetime are commonly observed in all the compounds. On the other hand, preferred orientation of a helimagnetic propagation vector and its temperature dependence dramatically change upon varying the Mn concentration. The robustness of the metastable skyrmions in these materials is attributed to topological nature of the skyrmions as affected by structural and magnetic disorder. Magnetocrystalline anisotropy as well as magnetic disorder due to the frustrated Mn spins play crucial roles in giving rise to the observed change in helical states and corresponding skyrmion lattice form.
Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral it inerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
77 - T. Adams , M. Garst , A. Bauer 2018
We report high-precision small angle neutron scattering of the orientation of the skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the skyrmion lattice may be accurately described as a triple-$vec{Q}$ state, where the modulus $vert vec{Q} vert$ is constant and the wave vectors enclose rigid angles of $120^{circ}$. Along a great circle across $langle 100rangle$, $langle 110rangle$, and $langle 111rangle$ the normal to the skyrmion-lattice plane varies systematically by $pm3^{circ}$ with respect to the field direction, while the in-plane alignment displays a reorientation by $15^{circ}$ for magnetic field along $langle 100rangle$. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, that is determined by the symmetries of the tetrahedral point group $T$ and includes contributions up to sixth-order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the skyrmion lattice in MnSi.
323 - H. Du , X. Zhao , F.N. Rybakov 2018
We report the direct evidence of field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of external magnetic field the character of such long-range skyrmion interactions change from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skrymion-edge distances as function of applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. Important role of demagnetizing fields and internal symmetry of three-dimensional magnetic skyrmions are discussed in details.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا