ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic

137   0   0.0 ( 0 )
 نشر من قبل Nicholas Micallef
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.



قيم البحث

اقرأ أيضاً

COVID-19 pandemic has generated what public health officials called an infodemic of misinformation. As social distancing and stay-at-home orders came into effect, many turned to social media for socializing. This increase in social media usage has ma de it a prime vehicle for the spreading of misinformation. This paper presents a mechanism to detect COVID-19 health-related misinformation in social media following an interdisciplinary approach. Leveraging social psychology as a foundation and existing misinformation frameworks, we defined misinformation themes and associated keywords incorporated into the misinformation detection mechanism using applied machine learning techniques. Next, using the Twitter dataset, we explored the performance of the proposed methodology using multiple state-of-the-art machine learning classifiers. Our method shows promising results with at most 78% accuracy in classifying health-related misinformation versus true information using uni-gram-based NLP feature generations from tweets and the Decision Tree classifier. We also provide suggestions on alternatives for countering misinformation and ethical consideration for the study.
The spreading COVID-19 misinformation over social media already draws the attention of many researchers. According to Google Scholar, about 26000 COVID-19 related misinformation studies have been published to date. Most of these studies focusing on 1 ) detect and/or 2) analysing the characteristics of COVID-19 related misinformation. However, the study of the social behaviours related to misinformation is often neglected. In this paper, we introduce a fine-grained annotated misinformation tweets dataset including social behaviours annotation (e.g. comment or question to the misinformation). The dataset not only allows social behaviours analysis but also suitable for both evidence-based or non-evidence-based misinformation classification task. In addition, we introduce leave claim out validation in our experiments and demonstrate the misinformation classification performance could be significantly different when applying to real-world unseen misinformation.
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
The COVID-19 pandemic has been damaging to the lives of people all around the world. Accompanied by the pandemic is an infodemic, an abundant and uncontrolled spreading of potentially harmful misinformation. The infodemic may severely change the pand emics course by interfering with public health interventions such as wearing masks, social distancing, and vaccination. In particular, the impact of the infodemic on vaccination is critical because it holds the key to reverting to pre-pandemic normalcy. This paper presents findings from a global survey on the extent of worldwide exposure to the COVID-19 infodemic, assesses different populations susceptibility to false claims, and analyzes its association with vaccine acceptance. Based on responses gathered from over 18,400 individuals from 40 countries, we find a strong association between perceived believability of misinformation and vaccination hesitancy. Additionally, our study shows that only half of the online users exposed to rumors might have seen the fact-checked information. Moreover, depending on the country, between 6% and 37% of individuals considered these rumors believable. Our survey also shows that poorer regions are more susceptible to encountering and believing COVID-19 misinformation. We discuss implications of our findings on public campaigns that proactively spread accurate information to countries that are more susceptible to the infodemic. We also highlight fact-checking platforms role in better identifying and prioritizing claims that are perceived to be believable and have wide exposure. Our findings give insights into better handling of risk communication during the initial phase of a future pandemic.
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th e results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا