ﻻ يوجد ملخص باللغة العربية
Learning discriminative and invariant feature representation is the key to visual image categorization. In this article, we propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization. We consider transforming the input image according to a finite transformation group that consists of multiple confounding orthogonal matrices, such as the D4 group. Then, we adopt a Siamese-style network to transfer the group structure to the representation space, where we can derive a trivial representation that is invariant under the group action. The linear classifier trained with trivial representation will also be possessed with invariance. To further improve the discriminative power of representation, we extend the representation to the tensor space while imposing orthogonal constraints on the transformation matrix to effectively reduce feature dimensions. We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods. In particular, with using ResNet architecture, our IDCCP model can reduce the dimension of the tensor representation by about 98% without sacrificing accuracy (i.e., <0.5%).
Aerial scene recognition is a fundamental task in remote sensing and has recently received increased interest. While the visual information from overhead images with powerful models and efficient algorithms yields considerable performance on scene re
Compared with global average pooling in existing deep convolutional neural networks (CNNs), global covariance pooling can capture richer statistics of deep features, having potential for improving representation and generalization abilities of deep C
Recent works have demonstrated that global covariance pooling (GCP) has the ability to improve performance of deep convolutional neural networks (CNNs) on visual classification task. Despite considerable advance, the reasons on effectiveness of GCP o
This paper jointly resolves two problems in vision transformer: i) the computation of Multi-Head Self-Attention (MHSA) has high computational/space complexity; ii) recent vision transformer networks are overly tuned for image classification, ignoring
Global covariance pooling (GCP) aims at exploiting the second-order statistics of the convolutional feature. Its effectiveness has been demonstrated in boosting the classification performance of Convolutional Neural Networks (CNNs). Singular Value De