ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Reinforcement Learning for General Video Game Playing

164   0   0.0 ( 0 )
 نشر من قبل Chengpeng Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement learning has successfully learned to play challenging board and video games. However, its generalization ability remains under-explored. The General Video Game AI Learning Competition aims at designing agents that are capable of learning to play different games levels that were unseen during training. This paper presents the games, entries and results of the 2020 General Video Game AI Learning Competition, held at the Sixteenth International Conference on Parallel Problem Solving from Nature and the 2020 IEEE Conference on Games. Three new games with sparse, periodic and dense rewards, respectively, were designed for this competition and the test levels were generated by adding minor perturbations to training levels or combining training levels. In this paper, we also design a reinforcement learning agent, called Arcane, for general video game playing. We assume that it is more likely to observe similar local information in different levels rather than global information. Therefore, instead of directly inputting a single, raw pixel-based screenshot of current game screen, Arcane takes the encoded, transformed global and local observations of the game screen as two simultaneous inputs, aiming at learning local information for playing new levels. T



قيم البحث

اقرأ أيضاً

We introduce the General Video Game Rule Generation problem, and the eponymous software framework which will be used in a new track of the General Video Game AI (GVGAI) competition. The problem is, given a game level as input, to generate the rules o f a game that fits that level. This can be seen as the inverse of the General Video Game Level Generation problem. Conceptualizing these two problems as separate helps breaking the very hard problem of generating complete games into smaller, more manageable subproblems. The proposed framework builds on the GVGAI software and thus asks the rule generator for rules defined in the Video Game Description Language. We describe the API, and three different rule generators: a random, a constructive and a search-based generator. Early results indicate that the constructive generator generates playable and somewhat interesting game rules but has a limited expressive range, whereas the search-based generator generates remarkably diverse rulesets, but with an uneven quality.
50 - John Aslanides 2017
Reinforcement learning is a general and powerful framework with which to study and implement artificial intelligence. Recent advances in deep learning have enabled RL algorithms to achieve impressive performance in restricted domains such as playing Atari video games (Mnih et al., 2015) and, recently, the board game Go (Silver et al., 2016). However, we are still far from constructing a generally intelligent agent. Many of the obstacles and open questions are conceptual: What does it mean to be intelligent? How does one explore and learn optimally in general, unknown environments? What, in fact, does it mean to be optimal in the general sense? The universal Bayesian agent AIXI (Hutter, 2005) is a model of a maximally intelligent agent, and plays a central role in the sub-field of general reinforcement learning (GRL). Recently, AIXI has been shown to be flawed in important ways; it doesnt explore enough to be asymptotically optimal (Orseau, 2010), and it can perform poorly with certain priors (Leike and Hutter, 2015). Several variants of AIXI have been proposed to attempt to address these shortfalls: among them are entropy-seeking agents (Orseau, 2011), knowledge-seeking agents (Orseau et al., 2013), Bayes with bursts of exploration (Lattimore, 2013), MDL agents (Leike, 2016a), Thompson sampling (Leike et al., 2016), and optimism (Sunehag and Hutter, 2015). We present AIXIjs, a JavaScript implementation of these GRL agents. This implementation is accompanied by a framework for running experiments against various environments, similar to OpenAI Gym (Brockman et al., 2016), and a suite of interactive demos that explore different properties of the agents, similar to REINFORCEjs (Karpathy, 2015). We use AIXIjs to present numerous experiments illustrating fundamental properties of, and differences between, these agents.
In this work we explore the use of latent representations obtained from multiple input sensory modalities (such as images or sounds) in allowing an agent to learn and exploit policies over different subsets of input modalities. We propose a three-sta ge architecture that allows a reinforcement learning agent trained over a given sensory modality, to execute its task on a different sensory modality-for example, learning a visual policy over image inputs, and then execute such policy when only sound inputs are available. We show that the generalized policies achieve better out-of-the-box performance when compared to different baselines. Moreover, we show this holds in different OpenAI gym and video game environments, even when using different multimodal generative models and reinforcement learning algorithms.
121 - Xiaoxiao Guo , Mo Yu , Yupeng Gao 2020
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches. Our source code is available at: https://github.com/XiaoxiaoGuo/rcdqn.
Due to the high efficiency and less weather dependency, autonomous greenhouses provide an ideal solution to meet the increasing demand for fresh food. However, managers are faced with some challenges in finding appropriate control strategies for crop growth, since the decision space of the greenhouse control problem is an astronomical number. Therefore, an intelligent closed-loop control framework is highly desired to generate an automatic control policy. As a powerful tool for optimal control, reinforcement learning (RL) algorithms can surpass human beings decision-making and can also be seamlessly integrated into the closed-loop control framework. However, in complex real-world scenarios such as agricultural automation control, where the interaction with the environment is time-consuming and expensive, the application of RL algorithms encounters two main challenges, i.e., sample efficiency and safety. Although model-based RL methods can greatly mitigate the efficiency problem of greenhouse control, the safety problem has not got too much attention. In this paper, we present a model-based robust RL framework for autonomous greenhouse control to meet the sample efficiency and safety challenges. Specifically, our framework introduces an ensemble of environment models to work as a simulator and assist in policy optimization, thereby addressing the low sample efficiency problem. As for the safety concern, we propose a sample dropout module to focus more on worst-case samples, which can help improve the adaptability of the greenhouse planting policy in extreme cases. Experimental results demonstrate that our approach can learn a more effective greenhouse planting policy with better robustness than existing methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا