ﻻ يوجد ملخص باللغة العربية
Using hydrodynamical simulations of a Milky Way-like galaxy, reaching 4.6 pc resolution, we study how the choice of star formation criteria impacts both galactic and Giant Molecular Clouds (GMC) scales. We find that using a turbulent, self-gravitating star formation criteria leads to an increase in the fraction of gas with densities between 10 and 10$^4$ cm$^{-3}$ when compared with a simulation using a molecular star formation method, despite both having nearly identical gaseous and stellar morphologies. Furthermore, we find that the site of star formation is effected with the the former tending to only produce stars in regions of very high density ($gt 10$ cm$^{-3}$) gas while the latter forms stars along the entire length of its spiral arms. The properties of GMCs are impacted by the choice of star formation criteria with the former method producing larger clouds. Despite the differences we find that the relationships between clouds properties, such as the Larson relations, remain unaffected. Finally, the scatter in the measured star formation efficiency per free-fall time of GMCs remains present with both methods and is thus set by other factors.
Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6pc resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessa
We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from
Aims: The complexity of star formation at the physical scale of molecular clouds is not yet fully understood. We investigate the mechanisms regulating the formation of stars in different environments within nearby star-forming galaxies from the PHANG
Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. The
We investigate Schmidts conjecture (i.e., that the star formation rate scales in a power-law fashion with the gas density) for four well-studied local molecular clouds (GMCs). Using the Bayesian methodology we show that a local Schmidt scaling relati