ﻻ يوجد ملخص باللغة العربية
The pseudorapidity distributions of charged particles measured in p+p($rm overline{p}$) collisions for energies ranging from $sqrt{s_{NN}}=23.6$ GeV to 13 TeV, d+Au collisions at $sqrt{s_{NN}}=200$ GeV, p+Pb collisions at $sqrt{s_{NN}}= 5.02$ TeV and A+A collisions at RHIC and LHC are investigated in the fireball model with Tsallis thermodynamics. We assume that the rapidity axis is populated with fireballs following q-Gaussian distribution and the charged particles follow the Tsallis distribution in the fireball. The theoretical results are in good agreement with the experimental data for all the collision systems and centralities investigated. The collision energy and centrality dependence of the central position $y_0$ and its width $sigma$ of the fireball distribution are also investigated. A possible application of the model to predict the charged particle pseudorapidity distributions for the system size scan program proposed recently for the STAR experiment at RHIC is proposed.
We study the recent PHOBOS data on the pseudorapidity density of inclusive charged particles in centrality-binned d+Au collisions at sqrt(s_NN) = 200 GeV. It appears that one can understand the increasing forward-backward asymmetry in the data by ass
The transverse momentum distributions of charged particles in p-Pb collisions as sqrt{s_{NN}} = 5.02 TeV measured by the ALICE collaboration are fitted using Tsallis statistics. The use of a thermodynamically consistent form of this distribution lead
Pseudorapidity distributions of charged particles emitted in $Au+Au$, $Cu+Cu$, $d+Au$, and $p+p$ collisions over a wide energy range have been measured using the PHOBOS detector at RHIC. The centrality dependence of both the charged particle distribu
The charged particles produced in heavy ion collisions consist of two parts: One is from the freeze-out of hot and dense matter formed in collisions. The other is from the leading particles. In this paper, the hot and dense matter is assumed to expan
Nuclear gluon modifications are the least constrained component of current global fits to nuclear parton distributions, due to the inadequate constraining power of presently available experimental data from nuclear deep inelastic scattering and nucle