ﻻ يوجد ملخص باللغة العربية
We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left. We propose the Move to Right (MTR) policy, which scans from left to right assigning nearest rightmost available resource to a user, and contrast it to the Unidirectional Gale-Shapley (UGS) matching policy. While both policies among all unidirectional policies, minimize the expected distance traveled by a request (request distance), MTR is fairer. Moreover, we show that when user and resource locations are modeled by statistical point processes, and resources are allowed to satisfy more than one user, the spatial system under unidirectional policies can be mapped into bulk service queueing systems, thus allowing the application of many queueing theory results that yield closed form expressions. As we consider a case where different resources can satisfy different numbers of users, we also generate new results for bulk service queues. We also consider bidirectional policies where there are no directional restrictions on resource allocation and develop an algorithm for computing the optimal assignment which is more efficient than known algorithms in the literature when there are more resources than users. Numerical evaluation of performance of unidirectional and bidirectional allocation schemes yields design guidelines beneficial for resource placement. p{Finally, we present a heuristic algorithm, which leverages the optimal dynamic programming scheme for one-dimensional inputs to obtain approximate solutions to the optimal assignment problem for the two-dimensional scenario and empirically yields request distances within a constant factor of the optimal solution.
This paper proposes a distributed dual gradient tracking algorithm (DDGT) to solve resource allocation problems over an unbalanced network, where each node in the network holds a private cost function and computes the optimal resource by interacting
Most large web-scale applications are now built by composing collections (from a few up to 100s or 1000s) of microservices. Operators need to decide how many resources are allocated to each microservice, and these allocations can have a large impact
A central issue of distributed computing systems is how to optimally allocate computing and storage resources and design data shuffling strategies such that the total execution time for computing and data shuffling is minimized. This is extremely cri
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time.To address this issue, bandwidth sharing techniques that quic
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its adva