ترغب بنشر مسار تعليمي؟ اضغط هنا

StylePredict: Machine Theory of Mind for Human Driver Behavior From Trajectories

158   0   0.0 ( 0 )
 نشر من قبل Rohan Chandra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies have shown that autonomous vehicles (AVs) behave conservatively in a traffic environment composed of human drivers and do not adapt to local conditions and socio-cultural norms. It is known that socially aware AVs can be designed if there exist a mechanism to understand the behaviors of human drivers. We present a notion of Machine Theory of Mind (M-ToM) to infer the behaviors of human drivers by observing the trajectory of their vehicles. Our M-ToM approach, called StylePredict, is based on trajectory analysis of vehicles, which has been investigated in robotics and computer vision. StylePredict mimics human ToM to infer driver behaviors, or styles, using a computational mapping between the extracted trajectory of a vehicle in traffic and the driver behaviors using graph-theoretic techniques, including spectral analysis and centrality functions. We use StylePredict to analyze driver behavior in different cultures in the USA, China, India, and Singapore, based on traffic density, heterogeneity, and conformity to traffic rules and observe an inverse correlation between longitudinal (overspeeding) and lateral (overtaking, lane-changes) driving styles.



قيم البحث

اقرأ أيضاً

When cooperating with a human, a robot should not only care about its environment and task but also develop an understanding of the partners reasoning. To support its human partner in complex tasks, the robot can share information that it knows. Howe ver simply communicating everything will annoy and distract humans since they might already be aware of and not all information is relevant in the current situation. The questions when and what type of information the human needs, are addressed through the concept of Theory of Mind based Communication which selects information sharing actions based on evaluation of relevance and an estimation of human beliefs. We integrate this into a communication assistant to support humans in a cooperative setting and evaluate performance benefits. We designed a human robot Sushi making task that is challenging for the human and generates different situations where humans are unaware and communication could be beneficial. We evaluate the influence of the human centric communication concept on performance with a user study. Compared to the condition without information exchange, assisted participants can recover from unawareness much earlier. The approach respects the costs of communication and balances interruptions better than other approaches. By providing information adapted to specific situations, the robot does not instruct but enable the human to make good decision.
Interactive driving scenarios, such as lane changes, merges and unprotected turns, are some of the most challenging situations for autonomous driving. Planning in interactive scenarios requires accurately modeling the reactions of other agents to dif ferent future actions of the ego agent. We develop end-to-end models for conditional behavior prediction (CBP) that take as an input a query future trajectory for an ego-agent, and predict distributions over future trajectories for other agents conditioned on the query. Leveraging such a model, we develop a general-purpose agent interactivity score derived from probabilistic first principles. The interactivity score allows us to find interesting interactive scenarios for training and evaluating behavior prediction models. We further demonstrate that the proposed score is effective for agent prioritization under computational budget constraints.
Today, one of the major challenges that autonomous vehicles are facing is the ability to drive in urban environments. Such a task requires communication between autonomous vehicles and other road users in order to resolve various traffic ambiguities. The interaction between road users is a form of negotiation in which the parties involved have to share their attention regarding a common objective or a goal (e.g. crossing an intersection), and coordinate their actions in order to accomplish it. In this literature review we aim to address the interaction problem between pedestrians and drivers (or vehicles) from joint attention point of view. More specifically, we will discuss the theoretical background behind joint attention, its application to traffic interaction and practical approaches to implementing joint attention for autonomous vehicles.
Trust is a critical issue in Human Robot Interactions as it is the core of human desire to accept and use a non human agent. Theory of Mind has been defined as the ability to understand the beliefs and intentions of others that may differ from ones o wn. Evidences in psychology and HRI suggest that trust and Theory of Mind are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entitys actions, beliefs and intentions. However, very few works take Theory of Mind of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the Theory of Mind abilities of a robot could affect humans trust towards the robot. To this end, participants played a Price Game with a humanoid robot that was presented having either low level Theory of Mind or high level Theory of Mind. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high level of Theory of Mind abilities were trusted more than the robots presented with low level Theory of Mind skills.
169 - Zheng Wang , Muhua Guan , Jin Lan 2020
Lane change is a very demanding driving task and number of traffic accidents are induced by mistaken maneuvers. An automated lane change system has the potential to reduce driver workload and to improve driving safety. One challenge is how to improve driver acceptance on the automated system. From the viewpoint of human factors, an automated system with different styles would improve user acceptance as the drivers can adapt the style to different driving situations. This paper proposes a method to design different lane change styles in automated driving by analysis and modeling of truck driver behavior. A truck driving simulator experiment with 12 participants was conducted to identify the driver model parameters and three lane change styles were classified as the aggressive, medium, and conservative ones. The proposed automated lane change system was evaluated by another truck driving simulator experiment with the same 12 participants. Moreover, the effect of different driving styles on driver experience and acceptance was evaluated. The evaluation results demonstrate that the different lane change styles could be distinguished by the drivers; meanwhile, the three styles were overall evaluated as acceptable on safety issues and reliable by the human drivers. This study provides insight into designing the automated driving system with different driving styles and the findings can be applied to commercial automated trucks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا