ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking LF-MMI, CTC and RNN-T Criteria for Streaming ASR

114   0   0.0 ( 0 )
 نشر من قبل Xiaohui Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, to measure the accuracy and efficiency for a latency-controlled streaming automatic speech recognition (ASR) application, we perform comprehensive evaluations on three popular training criteria: LF-MMI, CTC and RNN-T. In transcribing social media videos of 7 languages with training data 3K-14K hours, we conduct large-scale controlled experimentation across each criterion using identical datasets and encoder model architecture. We find that RNN-T has consistent wins in ASR accuracy, while CTC models excel at inference efficiency. Moreover, we selectively examine various modeling strategies for different training criteria, including modeling units, encoder architectures, pre-training, etc. Given such large-scale real-world streaming ASR application, to our best knowledge, we present the first comprehensive benchmark on these three widely used training criteria across a great many languages.



قيم البحث

اقرأ أيضاً

Streaming end-to-end automatic speech recognition (ASR) systems are widely used in everyday applications that require transcribing speech to text in real-time. Their minimal latency makes them suitable for such tasks. Unlike their non-streaming count erparts, streaming models are constrained to be causal with no future context and suffer from higher word error rates (WER). To improve streaming models, a recent study [1] proposed to distill a non-streaming teacher model on unsupervised utterances, and then train a streaming student using the teachers predictions. However, the performance gap between teacher and student WERs remains high. In this paper, we aim to close this gap by using a diversified set of non-streaming teacher models and combining them using Recognizer Output Voting Error Reduction (ROVER). In particular, we show that, despite being weaker than RNN-T models, CTC models are remarkable teachers. Further, by fusing RNN-T and CTC models together, we build the strongest teachers. The resulting student models drastically improve upon streaming models of previous work [1]: the WER decreases by 41% on Spanish, 27% on Portuguese, and 13% on French.
End-to-end (E2E) systems for automatic speech recognition (ASR), such as RNN Transducer (RNN-T) and Listen-Attend-Spell (LAS) blend the individual components of a traditional hybrid ASR system - acoustic model, language model, pronunciation model - i nto a single neural network. While this has some nice advantages, it limits the system to be trained using only paired audio and text. Because of this, E2E models tend to have difficulties with correctly recognizing rare words that are not frequently seen during training, such as entity names. In this paper, we propose modifications to the RNN-T model that allow the model to utilize additional metadata text with the objective of improving performance on these named entity words. We evaluate our approach on an in-house dataset sampled from de-identified public social media videos, which represent an open domain ASR task. By using an attention model and a biasing model to leverage the contextual metadata that accompanies a video, we observe a relative improvement of about 16% in Word Error Rate on Named Entities (WER-NE) for videos with related metadata.
Hybrid automatic speech recognition (ASR) models are typically sequentially trained with CTC or LF-MMI criteria. However, they have vastly different legacies and are usually implemented in different frameworks. In this paper, by decoupling the concep ts of modeling units and label topologies and building proper numerator/denominator graphs accordingly, we establish a generalized framework for hybrid acoustic modeling (AM). In this framework, we show that LF-MMI is a powerful training criterion applicable to both limited-context and full-context models, for wordpiece/mono-char/bi-char/chenone units, with both HMM/CTC topologies. From this framework, we propose three novel training schemes: chenone(ch)/wordpiece(wp)-CTC-bMMI, and wordpiece(wp)-HMM-bMMI with different advantages in training performance, decoding efficiency and decoding time-stamp accuracy. The advantages of different training schemes are evaluated comprehensively on Librispeech, and wp-CTC-bMMI and ch-CTC-bMMI are evaluated on two real world ASR tasks to show their effectiveness. Besides, we also show bi-char(bc) HMM-MMI models can serve as better alignment models than traditional non-neural GMM-HMMs.
400 - Bo Li , Anmol Gulati , Jiahui Yu 2020
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compared to a conventional ASR model. To address this issue, we look at encouraging the E2E model to emit words early, through an algorithm called FastEmit [3]. Naturally, improving on latency results in a quality degradation. To address this, we explore replacing the LSTM layers in the encoder of our E2E model with Conformer layers [4], which has shown good improvements for ASR. Secondly, we also explore running a 2nd-pass beam search to improve quality. In order to ensure the 2nd-pass completes quickly, we explore non-causal Conformer layers that feed into the same 1st-pass RNN-T decoder, an algorithm called Cascaded Encoders [5]. Overall, we find that the Conformer RNN-T with Cascaded Encoders offers a better quality and latency tradeoff for streaming ASR.
The Transformer self-attention network has shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequenc e is required to compute both self-attention and source--target attention. In this paper, we propose a novel blockwise synchronous beam search algorithm based on blockwise processing of encoder to perform streaming E2E Transformer ASR. In the beam search, encoded feature blocks are synchronously aligned using a block boundary detection technique, where a reliability score of each predicted hypothesis is evaluated based on the end-of-sequence and repeated tokens in the hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech English, and CSJ Japanese tasks show that the proposed streaming Transformer algorithm outperforms conventional online approaches, including monotonic chunkwise attention (MoChA), especially when using the knowledge distillation technique. An ablation study indicates that our streaming approach contributes to reducing the response time, and the repetition criterion contributes significantly in certain tasks. Our streaming ASR models achieve comparable or superior performance to batch models and other streaming-based Transformer methods in all tasks considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا