ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analysis of Dataset Overlap on Winograd-Style Tasks

122   0   0.0 ( 0 )
 نشر من قبل Ali Emami Mr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model performance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlap between these training corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the corpora on which state-of-the-art models are (pre)trained, and that a significant drop in classification accuracy occurs when we evaluate models on instances with minimal overlap. Based on these results, we develop the KnowRef-60K dataset, which consists of over 60k pronoun disambiguation problems scraped from web data. KnowRef-60K is the largest corpus to date for WSC-style common-sense reasoning and exhibits a significantly lower proportion of overlaps with current pretraining corpora.



قيم البحث

اقرأ أيضاً

There have been various types of pretraining architectures including autoregressive models (e.g., GPT), autoencoding models (e.g., BERT), and encoder-decoder models (e.g., T5). On the other hand, NLP tasks are different in nature, with three main cat egories being classification, unconditional generation, and conditional generation. However, none of the pretraining frameworks performs the best for all tasks, which introduces inconvenience for model development and selection. We propose a novel pretraining framework GLM (General Language Model) to address this challenge. Compared to previous work, our architecture has three major benefits: (1) it performs well on classification, unconditional generation, and conditional generation tasks with one single pretrained model; (2) it outperforms BERT-like models on classification due to improved pretrain-finetune consistency; (3) it naturally handles variable-length blank filling which is crucial for many downstream tasks. Empirically, GLM substantially outperforms BERT on the SuperGLUE natural language understanding benchmark with the same amount of pre-training data. Moreover, GLM with 1.25x parameters of BERT-Large achieves the best performance in NLU, conditional and unconditional generation at the same time, which demonstrates its generalizability to different downstream tasks.
Recently, Talmor and Berant (2018) introduced ComplexWebQuestions - a dataset focused on answering complex questions by decomposing them into a sequence of simpler questions and extracting the answer from retrieved web snippets. In their work the aut hors used a pre-trained reading comprehension (RC) model (Salant and Berant, 2018) to extract the answer from the web snippets. In this short note we show that training a RC model directly on the training data of ComplexWebQuestions reveals a leakage from the training set to the test set that allows to obtain unreasonably high performance. As a solution, we construct a new partitioning of ComplexWebQuestions that does not suffer from this leakage and publicly release it. We also perform an empirical evaluation on these two datasets and show that training a RC model on the training data substantially improves state-of-the-art performance.
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., word choices, sentence structures). More traditional systems use templates to determine th e realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as soft templates. That is, the model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the content record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its w ide application to tailored text generation. Existing works evaluate the style transfer models based on content preservation and transfer strength. In this work, we propose a reinforcement learning based framework that directly rewards the framework on these target metrics yielding a better transfer of the target style. We show the improved performance of our proposed framework based on automatic and human evaluation on three independent tasks: wherein we transfer the style of text from formal to informal, high excitement to low excitement, modern English to Shakespearean English, and vice-versa in all the three cases. Improved performance of the proposed framework over existing state-of-the-art frameworks indicates the viability of the approach.
The ability to perform arithmetic tasks is a remarkable trait of human intelligence and might form a critical component of more complex reasoning tasks. In this work, we investigate if the surface form of a number has any influence on how sequence-to -sequence language models learn simple arithmetic tasks such as addition and subtraction across a wide range of values. We find that how a number is represented in its surface form has a strong influence on the models accuracy. In particular, the model fails to learn addition of five-digit numbers when using subwords (e.g., 32), and it struggles to learn with character-level representations (e.g., 3 2). By introducing position tokens (e.g., 3 10e1 2), the model learns to accurately add and subtract numbers up to 60 digits. We conclude that modern pretrained language models can easily learn arithmetic from very few examples, as long as we use the proper surface representation. This result bolsters evidence that subword tokenizers and positional encodings are components in current transformer designs that might need improvement. Moreover, we show that regardless of the number of parameters and training examples, models cannot learn addition rules that are independent of the length of the numbers seen during training. Code to reproduce our experiments is available at https://github.com/castorini/transformers-arithmetic

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا