ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rapid Build-up of Massive Early-type Galaxies. Supersolar Metallicity, High Velocity Dispersion and Young Age for an ETG at z=3.35

135   0   0.0 ( 0 )
 نشر من قبل Paolo Saracco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to very deep spectroscopic observations carried out at the Large Binocular Telescope, we measured simultaneously stellar age, metallicity and velocity dispersion for C1-23152, an ETG at redshift $z$=3.352, corresponding to an epoch when the Universe was $sim$1.8 Gyr old. The analysis of its spectrum shows that this galaxy, hosting an AGN, formed and assembled $sim$2$times$10$^{11}$ M$_odot$ shaping its morphology within the $sim$600 Myr preceding the observations, since $z$$sim$4.6. The stellar population has a mean mass-weighted age 400$^{+30}_{-70}$ Myr and it is formed between $sim$600 Myr and $sim$150 Myr before the observed epoch, this latter being the time since quenching. Its high stellar velocity dispersion, $sigma_e$=409$pm$60 km s$^{-1}$, confirms the high mass (M$_{dyn}$=$2.2(pm0.4)$$times$10$^{11}$ M$_odot$) and the high mass density ($Sigma_e^{M^*}$=$Sigma_{1kpc}=3.2(pm0.7)times10^{10}$ M$_odot$ kpc$^{-2}$), suggesting a fast dissipative process at its origin. The analysis points toward a supersolar metallicity, [Z/H]=0.25$^{+0.006}_{-0.10}$, in agreement with the above picture, suggesting a star formation efficiency much higher than the replenishment time. However, sub-solar metallicity values cannot be firmly ruled out by our analysis. Quenching must have been extremely efficient to reduce the star formation to SFR$<$6.5 M$_odot$ yr$^{-1}$ in less than 150 Myr. This could be explained by the presence of the AGN, even if a causal relation cannot be established from the data. C1-23152 has the same stellar and physical properties of the densest ETGs in the local Universe of comparable mass, suggesting that they are C1-23152-like galaxies which evolved to $z=0$ unperturbed.



قيم البحث

اقرأ أيضاً

We investigate the Mg-sigma and <Fe>-sigma relations in a sample of 72 early-type galaxies drawn mostly from cluster and group environments using a homogeneous data-set which is well-calibrated onto the Lick/IDS system. The small intrinsic scatter in Mg at a given sigma gives upper limits on the spread in age and metallicity of 49% and 32% respectively, if the spread is attributed to one quantity only and if the variations in age and metallicity are uncorrelated. The age/metallicity distribution as inferred from the Hbeta vs <Fe> diagnostic diagram reinforces this conclusion, as we find mostly galaxies with large luminosity weighted ages spanning a range in metallicity. In our sample we do not find significant evidence for an anti-correlation of ages and metallicities which would keep the index-sigma relations tight while hiding a large spread in age and metallicity. As a result of correlated errors in the age-metallicity plane, a mild age-metallicity anti-correlation cannot be completely ruled out given the current data. Correcting the line-strengths indices for non-solar abundance ratios following the recent paper by Trager et al., leads to higher mean metallicity and slightly younger age estimates while preserving the metallicity sequence. The [Mg/Fe] ratio is mildly correlated with the central velocity dispersion and ranges from [Mg/Fe]=0.05 to 0.3 for galaxies with sigma > 100 km/s. Under the assumption that there is no age gradient along the index-sigma relations, the abundance-ratio corrected Mg-sigma, <Fe>-sigma and Hbeta-sigma relations give consistent estimates of Delta [M/H]/ Delta log sigma = 0.9 (+- 0.1). The slope of the Hbeta-sigma relation limits a potential age trend as a function of sigma to 2-3 Gyrs along the sequence.(abriged)
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decre ase of the stellar velocity dispersions since redshift $z approx 2$. At present 25 out of 40 galaxies are quiescent with structural parameters (sizes and velocity dispersions) in agreement with local early type galaxies. At z=2 all simulated galaxies with $M_* gtrsim 10^{11}M_{odot}$ (11 out of 40) at z=2 are compact with projected half-mass radii of $approx$ 0.77 ($pm$0.24) kpc and line-of-sight velocity dispersions within the projected half-mass radius of $approx$ 262 ($pm$28) kms$^{-1}$ (3 out of 11 are already quiescent). Similar to observed compact early-type galaxies at high redshift the simulated galaxies are clearly offset from the local mass-size and mass-velocity dispersion relations. Towards redshift zero the sizes increase by a factor of $sim 5-6$, following $R_{1/2} propto (1+z)^{alpha}$ with $alpha = -1.44$ for quiescent galaxies ($alpha = -1.12$ for all galaxies). The velocity dispersions drop by about one-third since $z approx 2$, following $sigma_{1/2} propto (1+z)^{beta}$ with $beta = 0.44$ for the quiescent galaxies ($beta = 0.37$ for all galaxies). The simulated size and dispersion evolution is in good agreement with observations and results from the subsequent accretion and merging of stellar systems at $zlesssim 2$ which is a natural consequence of the hierarchical structure formation. A significant number of the simulated massive galaxies (7 out of 40) experience no merger more massive than 1:4 (usually considered as major mergers). On average, the dominant accretion mode is stellar minor mergers with a mass-weighted mass-ratio of 1:5. (abridged)
We present the first spectroscopic confirmation of an ultra-massive galaxy at redshift z>3 using data from Keck-NIRSPEC, VLT-Xshooter, and GTC-Osiris. We detect strong [OIII] and Ly$alpha$ emission, and weak [OII], CIV, and HeII, placing C1-23152 at a spectroscopic redshift of $z_{spec}$=3.351. The modeling of the emission-line corrected spectral energy distribution results in a best-fit stellar mass of $M_{*}=3.1^{+0.6}_{-0.7}times10^{11} M_{odot}$, a star-formation rate of <7 $M_{odot} yr^{-1}$, and negligible dust extinction. The stars appear to have formed in a short intense burst ~300-500 Myr prior to the observation epoch, setting the formation redshift of this galaxy at z~4.1. From the analysis of the line ratios and widths, and the observed flux at 24$mu$m, we confirm the presence of a luminous hidden active galactic nucleus (AGN), with bolometric luminosity of ~$10^{46}erg s^{-1}$. Potential contamination to the observed SED from the AGN continuum is constrained, placing a lower limit on the stellar mass of $2times10^{11} M_{odot}$. HST/WFC3 $H_{160}$ and ACS $I_{814}$ images are modeled, resulting in an effective radius of $r_{e}$~1 kpc in the $H_{160}$ band and a Sersic index n~4.4. This object may be a prototype of the progenitors of local most massive elliptical galaxies in the first 2 Gyr of cosmic history, having formed most of its stars at z>4 in a highly dissipative, intense, and short burst of star formation. C1-23152 is completing its transition to a post-starburst phase while hosting a powerful AGN, potentially responsible for the quenching of the star formation activity.
The accretion of minor satellites is currently proposed as the most likely mechanism to explain the significant size evolution of the massive galaxies during the last ~10 Gyr. In this paper we investigate the rest-frame colors and the average stellar ages of satellites found around massive galaxies (Mstar 10^11Msun) since z~2. We find that the satellites have bluer colors than their central galaxies. When exploring the stellar ages of the galaxies, we find that the satellites have similar ages to the massive galaxies that host them at high redshifts, while at lower redshifts they are, on average, ~1.5 Gyr younger. If our satellite galaxies create the envelope of nearby massive galaxies, our results would be compatible with the idea that the outskirts of those galaxies are slightly younger, metal-poorer and with lower [alpha/Fe] abundance ratios than their inner regions.
Aims. We aim at finding candidates of potential survivors of high-redshift compact galaxies in SDSS, as targets for more detailed follow-up observations. Methods. From the virial theorem it is expected that for a given mass, compact galaxies have s tellar velocity dispersion higher than the mean due to their smaller sizes. Therefore velocity dispersion coupled with size (or mass) is an appropriate method to select relics, independent of the stellar population properties. Based on these consideration we design a set of criteria using distribution of early-type galaxies from SDSS on the log$_{10}$(R$_{0}$)-log$_{10}$($sigma_{0}$) plane to find the most extreme objects on it. Results. We find 76 galaxies at 0.05 < z < 0.2, which have properties similar to the typical quiescent galaxies at high redshift. We study how well these galaxies fit on well-known local universe relations of early-type galaxies such as the fundamental plane, the red sequence or mass-size relations. As expected from the selection criteria, the candidates are located in an extreme corner of mass-size plane. However, they do not extend as deeply into the so-called zone of exclusion as some of the high-redshift compact galaxies (red nuggets) found at high redshift, being a factor 2-3 less massive at a given intrinsic scale size. Our candidates are systematically offset from scaling relations of average early-type galaxies, while being in the mass-size range expected for passive evolution of the red nuggets from their high redshift to the present. Conclusions. The 76 selected candidates form a well suited set of objects for further follow-up observations. We argue that selecting a high velocity dispersion is the best way to find analogues of compact high redshift galaxies in the local universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا