ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicative Connections and Their Lie Theory

396   0   0.0 ( 0 )
 نشر من قبل Luca Vitagliano
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define and study multiplicative connections in the tangent bundle of a Lie groupoid. Multiplicative connections are linear connections satisfying an appropriate compatibility with the groupoid structure. Our definition is natural in the sense that a linear connection on a Lie groupoid is multiplicative if and only if its torsion is a multiplicative tensor in the sense of Bursztyn-Drummond [4] and its geodesic spray is a multiplicative vector field. We identify the obstruction to the existence of a multiplicative connection. We also discuss the infinitesimal version of multiplicative connections in the tangent bundle, that we call infinitesimally multiplicative (IM) connections and we prove an integration theorem for IM connections. Finally, we present a few toy examples. Along the way, we discuss fiber-wise linear connections in the tangent bundle of the total space of a vector bundle.



قيم البحث

اقرأ أيضاً

We introduce an axiomatic framework for the parallel transport of connections on gerbes. It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. The smoothness conditi ons are imposed with respect to a strict Lie 2-group, which plays the role of a band, or structure 2-group. Upon choosing certain examples of Lie 2-groups, our axiomatic framework reproduces in a systematical way several known concepts of gerbes with connection: non-abelian differential cocycles, Breen-Messing gerbes, abelian and non-abelian bundle gerbes. These relationships convey a well-defined notion of surface holonomy from our axiomatic framework to each of these concrete models. Till now, holonomy was only known for abelian gerbes; our approach reproduces that known concept and extends it to non-abelian gerbes. Several new features of surface holonomy are exposed under its extension to non-abelian gerbes; for example, it carries an action of the mapping class group of the surface.
We briefly review our results on the Lie theory underlying vector bundles over Lie groupoids and Lie algebroids, pointing out the role of Poisson geometry in extending these results to double Lie algebroids and LA-groupoids.
Motivated by our attempt to recast Cartans work on Lie pseudogroups in a more global and modern language, we are brought back to the question of understanding the linearization of multiplicative forms on groupoids and the corresponding integrability problem. From this point of view, the novelty of this paper is that we study forms with coefficients. However, the main contribution of this paper is conceptual: the finding of the relationship between multiplicative forms and Cartans work, which provides a completely new approach to integrability theorems for multiplicative forms. Back to Cartan, the multiplicative point of view shows that, modulo Lies functor, the Cartan Pfaffian system (itself a multiplicative form with coefficients!) is the same thing as the classical Spencer operator.
Let $mathbb{X}=[X_1rightrightarrows X_0]$ be a Lie groupoid equipped with a connection, given by a smooth distribution $mathcal{H} subset T X_1$ transversal to the fibers of the source map. Under the assumption that the distribution $mathcal{H}$ is i ntegrable, we define a version of de Rham cohomology for the pair $(mathbb{X}, mathcal{H})$, and we study connections on principal $G$-bundles over $(mathbb{X}, mathcal{H})$ in terms of the associated Atiyah sequence of vector bundles. We also discuss associated constructions for differentiable stacks. Finally, we develop the corresponding Chern-Weil theory and describe characteristic classes of principal $G$-bundles over a pair $(mathbb{X}, mathcal{H})$.
We discuss a Moser type argument to show when a deformation of a Lie group homomorphism and of a Lie subgroup is trivial. For compact groups we obtain stability results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا