ﻻ يوجد ملخص باللغة العربية
The electricity market, which was initially designed for dispatchable power plants and inflexible demand, is being increasingly challenged by new trends, such as the high penetration of intermittent renewables and the transformation of the consumers energy space. To accommodate these new trends and improve the performance of the market, several modifications to current market designs have been proposed in the literature. Given the vast variety of these proposals, this paper provides a comprehensive investigation of the modifications proposed in the literature as well as a detailed assessment of their suitability for improving market performance under the continuously evolving electricity landscape. To this end, first, a set of criteria for an ideal market design is proposed, and the barriers present in current market designs hindering the fulfillment of these criteria are identified. Then, the different market solutions proposed in the literature, which could potentially mitigate these barriers, are extensively explored. Finally, a taxonomy of the proposed solutions is presented, highlighting the barriers addressed by each proposal and the associated implementation challenges. The outcomes of this analysis show that even though each barrier is addressed by at least one proposed solution, no single proposal is able to address all the barriers simultaneously. In this regard, a future-proof market design must combine different elements of proposed solutions to comprehensively mitigate market barriers and overcome the identified implementation challenges. Thus, by thoroughly reviewing this rich body of literature, this paper introduces key contributions enabling the advancement of the state-of-the-art towards increasingly efficient electricity market.
In this paper we develop a novel method of wholesale electricity market modeling. Our optimization-based model decomposes wholesale supply and demand curves into buy and sell orders of individual market participants. In doing so, the model detects an
The world is facing major challenges related to global warming and emissions of greenhouse gases is a major causing factor. In 2017, energy industries accounted for 46% of all CO2 emissions globally, which shows a large potential for reduction. This
Prediction of power outages caused by convective storms which are highly localised in space and time is of crucial importance to power grid operators. We propose a new machine learning approach to predict the damage caused by storms. This approach hi
We determine winners and losers of immigration using a general equilibrium search and matching model in which native and non-native employees, who are heterogeneous with respect to their skill level, produce different types of goods. Unemployment ben
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption)