ﻻ يوجد ملخص باللغة العربية
We present abundances of 21 elements in a sample of 13 bright FG dwarfs drawn from the Kepler LEGACY sample to examine the applicability of the abundance-age relations to stars with properties strongly departing from solar. These stars have precise asteroseismic ages that can be compared to the abundance-based estimates. We analyse the well-known binary 16 Cyg AB for validation purposes and confirm the existence of a slight metal enhancement (~0.02 dex) in the primary, which might arise from planetary formation/ingestion. We draw attention to systematic errors in some widely-used catalogues of non-seismic parameters that may significantly bias asteroseismic inferences. In particular, we find evidence that the ASPCAP Teff scale used for the APOKASC catalogue is too cool for dwarfs and that the [Fe/H] values are underestimated by ~0.1 dex. We compare seismic ages to those inferred from empirical abundance-age relations based on ages from PARSEC isochrones and abundances obtained in the framework of the HARPS-GTO program. These calibrations take into account a dependency with the stellar effective temperature, metallicity, and/or mass. We find that the seismic and abundance-based ages differ on average by 1.5-2 Gyrs, while taking into account a dependency with one or two stellar parameters in the calibrations leads to a global improvement of up to ~0.5 Gyr. However, even in that case we find that seismic ages are systematically larger by ~0.7 Gyr. We argue that it may be ascribed to a variety of causes including the presence of small zero-point offsets between our abundances and those used to construct the calibrations or to the choice of the set of theoretical isochrones. The conclusions above are supported by the analysis of literature data for a larger number of Kepler targets. [Abridged]
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measur
Context: Precise chemical abundances coupled with reliable ages are key ingredients to understand the chemical history of our Galaxy. Open Clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims: The aim of th
Lithium abundance A(Li) and surface rotation are good diagnostic tools to probe the internal mixing and angular momentum transfer in stars. We explore the relation between surface rotation, A(Li) and age in a sample of seismic solar-analogue (SA) sta
Linear damping rates and modal frequency corrections of radial oscillation modes in selected LEGACY main-sequence stars are estimated by means of a nonadiabatic stability analysis. The selected stellar sample covers stars observed by Kepler with a la