ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Extremity Load Reduction for Lower LimbExoskeleton Trajectory Generation Using AnkleTorque Minimization

266   0   0.0 ( 0 )
 نشر من قبل Yik Ben Wong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the lower limb exoskeletons which providemobility for paraplegic patients to support their daily life havedrawn much attention. However, the pilots are required to applyexcessive force through a pair of crutches to maintain balanceduring walking. This paper proposes a novel gait trajectorygeneration algorithm for exoskeleton locomotion on flat groundand stair which aims to minimize the force applied by the pilotwithout increasing the degree of freedom (DoF) of the system.First, the system is modelled as a five-link mechanism dynam-ically for torque computing. Then, an optimization approachis used to generate the trajectory minimizing the ankle torquewhich is correlated to the supporting force. Finally, experimentis conducted to compare the different gait generation algorithmsthrough measurement of ground reaction force (GRF) appliedon the crutches



قيم البحث

اقرأ أيضاً

A significant challenge for the control of a robotic lower extremity rehabilitation exoskeleton is to ensure stability and robustness during programmed tasks or motions, which is crucial for the safety of the mobility-impaired user. Due to various le vels of the users disability, the human-exoskeleton interaction forces and external perturbations are unpredictable and could vary substantially and cause conventional motion controllers to behave unreliably or the robot to fall down. In this work, we propose a new, reinforcement learning-based, motion controller for a lower extremity rehabilitation exoskeleton, aiming to perform collaborative squatting exercises with efficiency, stability, and strong robustness. Unlike most existing rehabilitation exoskeletons, our exoskeleton has ankle actuation on both sagittal and front planes and is equipped with multiple foot force sensors to estimate center of pressure (CoP), an important indicator of system balance. This proposed motion controller takes advantage of the CoP information by incorporating it in the state input of the control policy network and adding it to the reward during the learning to maintain a well balanced system state during motions. In addition, we use dynamics randomization and adversary force perturbations including large human interaction forces during the training to further improve control robustness. To evaluate the effectiveness of the learning controller, we conduct numerical experiments with different settings to demonstrate its remarkable ability on controlling the exoskeleton to repetitively perform well balanced and robust squatting motions under strong perturbations and realistic human interaction forces.
171 - Mathieu Geisert 2016
The recent works on quadrotor have focused on more and more challenging tasks on increasingly complex systems. Systems are often augmented with slung loads, inverted pendulums or arms, and accomplish complex tasks such as going through a window, gras ping, throwing or catching. Usually, controllers are designed to accomplish a specific task on a specific system using analytic solutions, so each application needs long preparations. On the other hand, the direct multiple shooting approach is able to solve complex problems without any analytic development, by using on-the-shelf optimization solver. In this paper, we show that this approach is able to solve a wide range of problems relevant to quadrotor systems, from on-line trajectory generation for quadrotors, to going through a window for a quadrotor-and-pendulum system, through manipulation tasks for a aerial manipulator.
Applying intelligent robot arms in dynamic uncertain environments (i.e., flexible production lines) remains challenging, which requires efficient algorithms for real time trajectory generation. The motion planning problem for robot trajectory generat ion is highly nonlinear and nonconvex, which usually comes with collision avoidance constraints, robot kinematics and dynamics constraints, and task constraints (e.g., following a Cartesian trajectory defined on a surface and maintain the contact). The nonlinear and nonconvex planning problem is computationally expensive to solve, which limits the application of robot arms in the real world. In this paper, for redundant robot arm planning problems with complex constraints, we present a motion planning method using iterative convex optimization that can efficiently handle the constraints and generate optimal trajectories in real time. The proposed planner guarantees the satisfaction of the contact-rich task constraints and avoids collision in confined environments. Extensive experiments on trajectory generation for weld grinding are performed to demonstrate the effectiveness of the proposed method and its applicability in advanced robotic manufacturing.
This work investigates an efficient trajectory generation for chasing a dynamic target, which incorporates the detectability objective. The proposed method actively guides the motion of a cinematographer drone so that the color of a target is well-di stinguished against the colors of the background in the view of the drone. For the objective, we define a measure of color detectability given a chasing path. After computing a discrete path optimized for the metric, we generate a dynamically feasible trajectory. The whole pipeline can be updated on-the-fly to respond to the motion of the target. For the efficient discrete path generation, we construct a directed acyclic graph (DAG) for which a topological sorting can be determined analytically without the depth-first search. The smooth path is obtained in quadratic programming (QP) framework. We validate the enhanced performance of state-of-the-art object detection and tracking algorithms when the camera drone executes the trajectory obtained from the proposed method.
Electrocorticogram (ECoG)-based brain computer interfaces (BCI) can potentially control upper extremity prostheses to restore independent function to paralyzed individuals. However, current research is mostly restricted to the offline decoding of fin ger or 2D arm movement trajectories, and these results are modest. This study seeks to improve the fundamental understanding of the ECoG signal features underlying upper extremity movements to guide better BCI design. Subjects undergoing ECoG electrode implantation performed a series of elementary upper extremity movements in an intermittent flexion and extension manner. It was found that movement velocity, $dottheta$, had a high positive (negative) correlation with the instantaneous power of the ECoG high-$gamma$ band (80-160 Hz) during flexion (extension). Also, the correlation was low during idling epochs. Visual inspection of the ECoG high-$gamma$ band revealed power bursts during flexion/extension events that have a waveform that strongly resembles the corresponding flexion/extension event as seen on $dottheta$. These high-$gamma$ bursts were present in all elementary movements, and were spatially distributed in a somatotopic fashion. Thus, it can be concluded that the high-$gamma$ power of ECoG strongly encodes for movement trajectories, and can be used as an input feature in future BCIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا