ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Optimizers for Plant Disease Classification with Convolutional Neural Networks

127   0   0.0 ( 0 )
 نشر من قبل Shreyas Labhsetwar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Crop failure owing to pests & diseases are inherent within Indian agriculture, leading to annual losses of 15 to 25% of productivity, resulting in a huge economic loss. This research analyzes the performance of various optimizers for predictive analysis of plant diseases with deep learning approach. The research uses Convolutional Neural Networks for classification of farm or plant leaf samples of 3 crops into 15 classes. The various optimizers used in this research include RMSprop, Adam and AMSgrad. Optimizers Performance is visualised by plotting the Training and Validation Accuracy and Loss curves, ROC curves and Confusion Matrix. The best performance is achieved using Adam optimizer, with the maximum validation accuracy being 98%. This paper focuses on the research analysis proving that plant diseases can be predicted and pre-empted using deep learning methodology with the help of satellite, drone based or mobile based images that result in reducing crop failure and agricultural losses.



قيم البحث

اقرأ أيضاً

Convolutional neural networks (CNN) are now being widely used for classifying and detecting pulmonary abnormalities in chest radiographs. Two complementary generalization properties of CNNs, translation invariance and equivariance, are particularly u seful in detecting manifested abnormalities associated with pulmonary disease, regardless of their spatial locations within the image. However, these properties also come with the loss of exact spatial information and global relative positions of abnormalities detected in local regions. Global relative positions of such abnormalities may help distinguish similar conditions, such as COVID-19 and viral pneumonia. In such instances, a global attention mechanism is needed, which CNNs do not support in their traditional architectures that aim for generalization afforded by translation invariance and equivariance. Vision Transformers provide a global attention mechanism, but lack translation invariance and equivariance, requiring significantly more training data samples to match generalization of CNNs. To address the loss of spatial information and global relations between features, while preserving the inductive biases of CNNs, we present a novel technique that serves as an auxiliary attention mechanism to existing CNN architectures, in order to extract global correlations between salient features.
Deep convolutional neural networks have been widely employed as an effective technique to handle complex and practical problems. However, one of the fundamental problems is the lack of formal methods to analyze their behavior. To address this challen ge, we propose an approach to compute the exact reachable sets of a network given an input domain, where the reachable set is represented by the face lattice structure. Besides the computation of reachable sets, our approach is also capable of backtracking to the input domain given an output reachable set. Therefore, a full analysis of a networks behavior can be realized. In addition, an approach for fast analysis is also introduced, which conducts fast computation of reachable sets by considering selected sensitive neurons in each layer. The exact pixel-level reachability analysis method is evaluated on a CNN for the CIFAR10 dataset and compared to related works. The fast analysis method is evaluated over a CNN CIFAR10 dataset and VGG16 architecture for the ImageNet dataset.
This paper considers the task of thorax disease classification on chest X-ray images. Existing methods generally use the global image as input for network learning. Such a strategy is limited in two aspects. 1) A thorax disease usually happens in (sm all) localized areas which are disease specific. Training CNNs using global image may be affected by the (excessive) irrelevant noisy areas. 2) Due to the poor alignment of some CXR images, the existence of irregular borders hinders the network performance. In this paper, we address the above problems by proposing a three-branch attention guided convolution neural network (AG-CNN). AG-CNN 1) learns from disease-specific regions to avoid noise and improve alignment, 2) also integrates a global branch to compensate the lost discriminative cues by local branch. Specifically, we first learn a global CNN branch using global images. Then, guided by the attention heat map generated from the global branch, we inference a mask to crop a discriminative region from the global image. The local region is used for training a local CNN branch. Lastly, we concatenate the last pooling layers of both the global and local branches for fine-tuning the fusion branch. The Comprehensive experiment is conducted on the ChestX-ray14 dataset. We first report a strong global baseline producing an average AUC of 0.841 with ResNet-50 as backbone. After combining the local cues with the global information, AG-CNN improves the average AUC to 0.868. While DenseNet-121 is used, the average AUC achieves 0.871, which is a new state of the art in the community.
Despite the effectiveness of Convolutional Neural Networks (CNNs) for image classification, our understanding of the relationship between shape of convolution kernels and learned representations is limited. In this work, we explore and employ the rel ationship between shape of kernels which define Receptive Fields (RFs) in CNNs for learning of feature representations and image classification. For this purpose, we first propose a feature visualization method for visualization of pixel-wise classification score maps of learned features. Motivated by our experimental results, and observations reported in the literature for modeling of visual systems, we propose a novel design of shape of kernels for learning of representations in CNNs. In the experimental results, we achieved a state-of-the-art classification performance compared to a base CNN model [28] by reducing the number of parameters and computational time of the model using the ILSVRC-2012 dataset [24]. The proposed models also outperform the state-of-the-art models employed on the CIFAR-10/100 datasets [12] for image classification. Additionally, we analyzed the robustness of the proposed method to occlusion for classification of partially occluded images compared with the state-of-the-art methods. Our results indicate the effectiveness of the proposed approach. The code is available in github.com/minogame/caffe-qhconv.
Deep convolutional neural networks have achieved remarkable success in computer vision. However, deep neural networks require large computing resources to achieve high performance. Although depthwise separable convolution can be an efficient module t o approximate a standard convolution, it often leads to reduced representational power of networks. In this paper, under budget constraints such as computational cost (MAdds) and the parameter count, we propose a novel basic architectural block, ANTBlock. It boosts the representational power by modeling, in a high dimensional space, interdependency of channels between a depthwise convolution layer and a projection layer in the ANTBlocks. Our experiments show that ANTNet built by a sequence of ANTBlocks, consistently outperforms state-of-the-art low-cost mobile convolutional neural networks across multiple datasets. On CIFAR100, our model achieves 75.7% top-1 accuracy, which is 1.5% higher than MobileNetV2 with 8.3% fewer parameters and 19.6% less computational cost. On ImageNet, our model achieves 72.8% top-1 accuracy, which is 0.8% improvement, with 157.7ms (20% faster) on iPhone 5s over MobileNetV2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا