ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical modeling and Dynamics of Multi-Domains in Negative-Capacitance MFIS-FETs

89   0   0.0 ( 0 )
 نشر من قبل Nilesh Pandey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analytical modeling and dynamics of multidomain in metal-ferroelectric-insulator-semiconductor (MFIS)-FETs are presented in this paper. The formation of multi-domain (MD) leads to oscillations in the conduction band in the channel and periodicity in the local electric field in the ferroelectric region. The impact of 2-D local electric field on the MD switching is captured in the model using the domain wall velocity concept. The optimum values of oxide thickness, ferroelectric thickness and channel length are calculated which corresponds to mono-domain device operation. Deviation from the optimum device parameters causes the transition of mono-domain state to multi-domain state in the ferroelectric. This work can be used as a guideline for designing MFIS-NCFETs, which provides the device parameters that leads to monodomain state in the MFIS-NCFET.



قيم البحث

اقرأ أيضاً

Large capacitance enhancement is useful for increasing the gate capacitance of field-effect transistors (FETs) to produce low-energy-consuming devices with improved gate controllability. We report strong capacitance enhancement effects in a newly eme rged two-dimensional channel material, molybdenum disulfide (MoS2). The enhancement effects are due to strong electron-electron interaction at the low carrier density regime in MoS2. We achieve about 50% capacitance enhancement in monolayer devices and 10% capacitance enhancement in bilayer devices. However, the enhancement effect is not obvious in multilayer (layer number >3) devices. Using the Hartree-Fock approximation, we illustrate the same trend in our inverse compressibility data.
The pressing quest for overcoming Boltzmann tyranny in low-power nanoscale electronics revived the thoughts of engineers of early 1930-s on the possibility of negative circuit constants. The concept of the ferroelectric-based negative capacitance (NC ) devices triggered explosive activity in the field. However, most of the research addressed transient NC, leaving the basic question of the existence of the steady-state NC unresolved. Here we demonstrate that the ferroelectric nanodot capacitor hosts a stable two-domain state realizing the static reversible NC device thus opening routes for the extensive use of the NC in domain wall-based nanoelectronics.
This paper investigates the thermodynamic driving force of transient negative capacitance (NC) in the series circuit of the resistor and ferroelectric capacitor (R-FEC). We find that the widely used Landau-Khalatnikov (L-K) theory, that is, the minim um of the Gibbs free energy, is inapplicable to explain the transient NC. The thermodynamic driving force of the transient NC phenomenon is the minimum of the difference between the elastic Gibbs free energy and the electric polarization work. The appearance of the transient NC phenomenon is not due to the widely accepted view that the ferroelectric polarization goes through the negative curvature region of elastic Gibbs free energy landscape (Ga). Instead, the transient NC phenomenon appears when the energy barrier of Ga disappears. The transient NC is dependent on both the intrinsic ferroelectric material parameters and extrinsic factors in the R-FEC circuit.
254 - Muhammad A. Alam , Mengwei Si , 2019
The elegant simplicity of the device concept and the urgent need for a new transistor at the twilight of Moores law have inspired many researchers in industry and academia to explore the physics and technology of negative capacitance field effect tra nsistor (NC-FET). Although hundreds of papers have been published, the validity of quasi-static NC and the frequency-reliability limits of NC-FET are still being debated. The concept of NC - if conclusively demonstrated - will have broad impacts on device physics and technology development. Here, the authors provide a critical review of recent progress on NC-FETs research and some starting points for a coherent discussion.
In this study, a SPICE model for negative capacitance vertical nanowire field-effect-transistor (NC VNW-FET) based on BSIM-CMG model and Landau-Khalatnikov (LK) equation was presented. Suffering from the limitation of short gate length there is lack of controllable and integrative structures for high performance NC VNW-FETs. A new kind of structure was proposed for NC VNW-FETs at sub-3nm node. Moreover, in order to understand and improve NC VNW-FETs, the S-shaped polarization-voltage curve (S-curve) was divided into four regions and some new design rules were proposed. By using the SPICE model, device-circuit co-optimization was implemented. The co-design of gate work function (WF) and NC was investigated. A ring oscillator was simulated to analyze the circuit energy-delay, and it shown that significant energy reduction, up to 88%, at iso-delay for NC VNW-FETs at low supply voltage can be achieved. This study gives a credible method to analysis the performance of NC based devices and circuits and reveals the potential of NC VNW-FETs in low-power applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا