ﻻ يوجد ملخص باللغة العربية
Existing methods for object detection in UAV images ignored an important challenge - imbalanced class distribution in UAV images - which leads to poor performance on tail classes. We systematically investigate existing solutions to long-tail problems and unveil that re-balancing methods that are effective on natural image datasets cannot be trivially applied to UAV datasets. To this end, we rethink long-tailed object detection in UAV images and propose the Dual Sampler and Head detection Network (DSHNet), which is the first work that aims to resolve long-tail distribution in UAV images. The key components in DSHNet include Class-Biased Samplers (CBS) and Bilateral Box Heads (BBH), which are developed to cope with tail classes and head classes in a dual-path manner. Without bells and whistles, DSHNet significantly boosts the performance of tail classes on different detection frameworks. Moreover, DSHNet significantly outperforms base detectors and generic approaches for long-tail problems on VisDrone and UAVDT datasets. It achieves new state-of-the-art performance when combining with image cropping methods. Code is available at https://github.com/we1pingyu/DSHNet
The 55th Design Automation Conference (DAC) held its first System Design Contest (SDC) in 2018. SDC18 features a lower power object detection challenge (LPODC) on designing and implementing novel algorithms based object detection in images taken from
Despite the recent success of deep neural networks, it remains challenging to effectively model the long-tail class distribution in visual recognition tasks. To address this problem, we first investigate the performance bottleneck of the two-stage le
Although much significant progress has been made in the research field of object detection with deep learning, there still exists a challenging task for the objects with small size, which is notably pronounced in UAV-captured images. Addressing these
In this report, we introduce the technical details of our submission to the VIPriors object detection challenge. Our solution is based on mmdetction of a strong baseline open-source detection toolbox. Firstly, we introduce an effective data augmentat
Most existing object instance detection and segmentation models only work well on fairly balanced benchmarks where per-category training sample numbers are comparable, such as COCO. They tend to suffer performance drop on realistic datasets that are