ترغب بنشر مسار تعليمي؟ اضغط هنا

Room Temperature Atomic Frequency Comb Memory for Light

84   0   0.0 ( 0 )
 نشر من قبل Patrick Ledingham
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$ hyperfine ground state of caesium. The frequency spacing of the classes is chosen to coincide with the $F=4 - F=5$ hyperfine splitting of the $6^2$P$_{3/2}$ excited state resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration $2,mathrm{ns}$ are mapped into this atomic frequency comb with pre-programmed recall times of $8,mathrm{ns}$ and $12,mathrm{ns}$, with multi-temporal mode storage and recall demonstrated. Utilising two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.



قيم البحث

اقرأ أيضاً

Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stab ilized with a consistent framework. Some applications require phase stabilization, including optical-frequency synthesis and measurements, optical-frequency division, and optical clocks. Partially stabilized microcombs can also benefit applications, such as oscillators, ranging, dual-comb spectroscopy, wavelength calibration, and optical communications. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency-comb sources important for studying comb-matter interactions with atoms and molecules. Here, we explore direct microcomb atomic spectroscopy, utilizing a cascaded, two-photon 1529-nm atomic transition of rubidium. Both the microcomb and the atomic vapor are implemented with planar fabrication techniques to support integration. By fine and simultaneous control of the repetition rate and carrier-envelope-offset frequency of the soliton microcomb, we obtain direct sub-Doppler and hyperfine spectroscopy of the $4^2D_{5/2}$ manifold. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations of the microcomb at the kilohertz-level over a few seconds and < 1 MHz day-to-day accuracy. Our work demonstrates atomic spectroscopy with microcombs and provides a rubidium-stabilized microcomb laser source, operating across the 1550 nm band for sensing, dimensional metrology, and communication.
153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we show an atomic frequency comb memory with spin wave storage in a promising material 153Eu3+:Y2SiO5, reaching storage times slightly beyond 10 {mu}s. We analyze the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3+:Y2SiO5, which we find to be 69 pm 3 kHz. These results represent a further step towards realising a long lived multi mode solid state quantum memory.
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahe rtz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, $sim 3 mu V cm^{-1}Hz^{-1/2}$ sensitivity is achieved and is found to be photon shot noise limited.
We demonstrate efficient and reversible mapping of a light field onto a thulium-doped crystal using an atomic frequency comb (AFC). Thanks to an accurate spectral preparation of the sample, we reach an efficiency of 9%. Our interpretation of the data is based on an original spectral analysis of the AFC. By independently measuring the absorption spectrum, we show that the efficiency is both limited by the available optical thickness and the preparation procedure at large absorption depth for a given bandwidth. The experiment is repeated with less than one photon per pulse and single photon counting detectors. We clearly observe that the AFC protocol is compatible with the noise level required for weak quantum field storage.
Photons are one of the prominent candidates for long-distance quantum communication and quantum information processing. Certain quantum information processing tasks require storage and faithful retrieval of single photons preserving the internal stat es of the photons. Here we propose a method to store the vector-vortex states of light in the intra-atomic frequency comb based quantum memory. We show that an atomic ensemble with two intra-atomic frequency combs corresponding to $Delta m = pm1$ transitions of similar frequency are sufficient for a robust and efficient quantum memory for vector-vortex states of light. As an example, we show that the Cs and Rb atoms are good candidates for storing these internal modes of light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا