ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the 2014-2015 neutrino flare associated with the blazar TXS 0506+056 and a recently discovered muon neutrino event IceCube-200107A in spatial coincidence with the blazar 4FGL J0955.1+3551, under the framework of a two-zone radiation model of blazars where an inner/outer blob close to/far from the supermassive black hole are invoked. An interesting feature that the two sources share in common is that no evidence of GeV gamma-ray activity is found during the neutrino detection period, probably implying a large opacity for GeV gamma rays in the neutrino production region. In our model, continuous particle acceleration/injection takes place in the inner blob at the jet base, where the hot X-ray corona of the supermassive black hole provides target photon fields for efficient neutrino production and strong GeV gamma-ray absorption. We show that this model can self-consistently interpret the neutrino emission from both two blazars in a large parameter space. In the meantime, the dissipation processes in outer blob are responsible for the simultaneous multi-wavelength emission of both sources. In agreement with previous studies of TXS 0506+056 and, an intense MeV emission from the induced electromagnetic cascade in the inner blob is robustly expected to accompany the neutrino flare in our model could be used to test the model with the next-generation MeV gamma-ray detector in the future.
Blazars exhibit flares across the entire electromagnetic spectrum. Many $gamma$-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variabili
A high-energy muon neutrino event, IceCube-170922A, was recently discovered in both spatial and temporal coincidence with a gamma-ray flare of the blazar TXS 0506+056. It has been shown, with standard one-zone models, that neutrinos can be produced i
We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we a
Motivated by the recently reported evidence of an association between a high-energy neutrino and a gamma-ray flare from the blazar TXS 0506+056, we calculate the expected high-energy neutrino signal from past, individual flares, from twelve blazars,
Blazar jets are extreme environments, in which relativistic proton interactions with an ultraviolet photon field could give rise to photopion production. High-confidence associations of individual high-energy neutrinos with blazar flares could be ach