ﻻ يوجد ملخص باللغة العربية
Edge caching can effectively reduce backhaul burden at core network and increase quality-ofservice at wireless edge nodes. However, the beneficial role of edge caching cannot be fully realized when the offloading link is in deep fade. Fortunately, the impairments induced by wireless propagation environments could be renovated by a reconfigurable intelligent surface (RIS). In this paper, a new RIS-aided edge caching system is proposed, where a network cost minimization problem is formulated to optimize content placement at cache units, active beamforming at base station and passive phase shifting at RIS. After decoupling the content placement subproblem with hybrid beamforming design, we propose an alternating optimization algorithm to tackle the active beamforming and passive phase shifting. For active beamforming, we transform the problem into a semidefinite programming (SDP) and prove that the optimal solution of SDP is always rank-1. For passive phase shifting, we introduce block coordinate descent method to alternately optimize the auxiliary variables and the RIS phase shifts. Further, a conjugate gradient algorithm based on manifold optimization is proposed to deal with the non-convex unit-modulus constraints. Numerical results show that our RIS-aided edge caching design can effectively decrease the network cost in terms of backhaul capacity and power consumption.
Thanks to the line-of-sight (LoS) transmission and flexibility, unmanned aerial vehicles (UAVs) effectively improve the throughput of wireless networks. Nevertheless, the LoS links are prone to severe deterioration by complex propagation environments
In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted two-way relay network, in which two users exchange information through the base station (BS) with the help of an RIS. By jointly designing the phase shifts at the RIS and
Recent considerations for reconfigurable intelligent surfaces (RISs) assume that RISs can convey information by reflection without the need of transmit radio frequency chains, which, however, is a challenging task. In this paper, we propose an RIS-en
Reconfigurable intelligent surfaces (RISs) have attracted wide interest from industry and academia since they can shape the wireless environment into a desirable form with a low cost. In practice, RISs have three types of implementations: 1) reflecti
Reconfigurable Intelligent Surfaces (RISs), comprising large numbers of low-cost and passive metamaterials with tunable reflection properties, have been recently proposed as an enabler for programmable radio propagation environments. However, the rol