ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Reconfigurable Intelligent Surfaces in Edge Caching: Joint Hybrid Beamforming and Content Placement Optimization

263   0   0.0 ( 0 )
 نشر من قبل Yingyang Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Edge caching can effectively reduce backhaul burden at core network and increase quality-ofservice at wireless edge nodes. However, the beneficial role of edge caching cannot be fully realized when the offloading link is in deep fade. Fortunately, the impairments induced by wireless propagation environments could be renovated by a reconfigurable intelligent surface (RIS). In this paper, a new RIS-aided edge caching system is proposed, where a network cost minimization problem is formulated to optimize content placement at cache units, active beamforming at base station and passive phase shifting at RIS. After decoupling the content placement subproblem with hybrid beamforming design, we propose an alternating optimization algorithm to tackle the active beamforming and passive phase shifting. For active beamforming, we transform the problem into a semidefinite programming (SDP) and prove that the optimal solution of SDP is always rank-1. For passive phase shifting, we introduce block coordinate descent method to alternately optimize the auxiliary variables and the RIS phase shifts. Further, a conjugate gradient algorithm based on manifold optimization is proposed to deal with the non-convex unit-modulus constraints. Numerical results show that our RIS-aided edge caching design can effectively decrease the network cost in terms of backhaul capacity and power consumption.



قيم البحث

اقرأ أيضاً

124 - Sixian Li , Bin Duo , Xiaojun Yuan 2019
Thanks to the line-of-sight (LoS) transmission and flexibility, unmanned aerial vehicles (UAVs) effectively improve the throughput of wireless networks. Nevertheless, the LoS links are prone to severe deterioration by complex propagation environments , especially in urban areas. Reconfigurable intelligent surfaces (RISs), as a promising technique, can significantly improve the propagation environment and enhance communication quality by intelligently reflecting the received signals. Motivated by this, the joint UAV trajectory and RISs passive beamforming design for a novel RIS-assisted UAV communication system is investigated to maximize the average achievable rate in this letter. To tackle the formulated non-convex problem, we divide it into two subproblems, namely, passive beamforming and trajectory optimization. We first derive a closed-form phase-shift solution for any given UAV trajectory to achieve the phase alignment of the received signals from different transmission paths. Then, with the optimal phase-shift solution, we obtain a suboptimal trajectory solution by using the successive convex approximation (SCA) method. Numerical results demonstrate that the proposed algorithm can considerably improve the average achievable rate of the system.
In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted two-way relay network, in which two users exchange information through the base station (BS) with the help of an RIS. By jointly designing the phase shifts at the RIS and beamforming matrix at the BS, our objective is to maximize the minimum signal-to-noise ratio (SNR) of the two users, under the transmit power constraint at the BS. We first consider the single-antenna BS case, and propose two algorithms to design the RIS phase shifts and the BS power amplification parameter, namely the SNR-upper-bound-maximization (SUM) method, and genetic-SNR-maximization (GSM) method. When there are multiple antennas at the BS, the optimization problem can be approximately addressed by successively solving two decoupled subproblems, one to optimize the RIS phase shifts, the other to optimize the BS beamforming matrix. The first subproblem can be solved by using SUM or GSM method, while the second subproblem can be solved by using optimized beamforming or maximum-ratio-beamforming method. The proposed algorithms have been verified through numerical results with computational complexity analysis.
Recent considerations for reconfigurable intelligent surfaces (RISs) assume that RISs can convey information by reflection without the need of transmit radio frequency chains, which, however, is a challenging task. In this paper, we propose an RIS-en hanced multiple-input single-output system with reflection pattern modulation, where the RIS can configure its reflection state for boosting the received signal power via passive beamforming and simultaneously conveying its own information via reflection. We formulate an optimization problem to maximize the average received signal power by jointly optimizing the active beamforming at the access point (AP) and passive beamforming at the RIS for the case where the RISs state information is statistically known by the AP, and propose a high-quality suboptimal solution based on the alternating optimization technique. We analyze the asymptotic outage probability of the proposed scheme under Rayleigh fading channels, for which a closed-form expression is derived. The achievable rate of the proposed scheme is also investigated for the case where the transmitted symbol is drawn from a finite constellation. Simulation results validate the effectiveness of the proposed scheme and reveal the effect of various system parameters on the achievable rate performance. It is shown that the proposed scheme outperforms the conventional RIS-assisted system without information transfer in terms of achievable rate performance.
Reconfigurable intelligent surfaces (RISs) have attracted wide interest from industry and academia since they can shape the wireless environment into a desirable form with a low cost. In practice, RISs have three types of implementations: 1) reflecti ve, where signals can be reflected to the users on the same side of the base station (BS), 2) transmissive, where signals can penetrate the RIS to serve the users on the opposite side of the BS, and 3) hybrid, where the RISs have a dual function of reflection and transmission. However, existing works focus on the reflective type RISs, and the other two types of RISs are not well investigated. In this letter, a downlink multi-user RIS-assisted communication network is considered, where the RIS can be one of these types. We derive the system sum-rate, and discuss which type can yield the best performance under a specific user distribution. Numerical results verify our analysis.
Reconfigurable Intelligent Surfaces (RISs), comprising large numbers of low-cost and passive metamaterials with tunable reflection properties, have been recently proposed as an enabler for programmable radio propagation environments. However, the rol e of the channel conditions near the RISs on their optimizability has not been analyzed adequately. In this paper, we present an asymptotic closed-form expression for the mutual information of a multi-antenna transmitter-receiver pair in the presence of multiple RISs, in the large-antenna limit, using the random matrix and replica theories. Under mild assumptions, asymptotic expressions for the eigenvalues and the eigenvectors of the channel covariance matrices are derived. We find that, when the channel close to an RIS is correlated, for instance due to small angle spread, the communication link benefits significantly from the RIS optimization, resulting in gains that are surprisingly higher than the nearly uncorrelated case. Furthermore, when the desired reflection from the RIS departs significantly from geometrical optics, the surface can be optimized to provide robust communication links. Building on the properties of the eigenvectors of the covariance matrices, we are able to find the optimal response of the RISs in closed form, bypassing the need for brute-force optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا