ﻻ يوجد ملخص باللغة العربية
Motivated by recent experimental observations [Phys. Rev. 96, 020407 (2017)] on hexagonal ferrites, we revisit the phase diagrams of diluted magnets close to the lattice percolation threshold. We perform large-scale Monte Carlo simulations of XY and Heisenberg models on both simple cubic lattices and lattices representing the crystal structure of the hexagonal ferrites. Close to the percolation threshold $p_c$, we find that the magnetic ordering temperature $T_c$ depends on the dilution $p$ via the power law $T_c sim |p-p_c|^phi$ with exponent $phi=1.09$, in agreement with classical percolation theory. However, this asymptotic critical region is very narrow, $|p-p_c| lesssim 0.04$. Outside of it, the shape of the phase boundary is well described, over a wide range of dilutions, by a nonuniversal power law with an exponent somewhat below unity. Nonetheless, the percolation scenario does not reproduce the experimentally observed relation $T_c sim (x_c -x)^{2/3}$ in PbFe$_{12-x}$Ga$_x$O$_{19}$. We discuss the generality of our findings as well as implications for the physics of diluted hexagonal ferrites.
The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering for H>0. A low-temperature (T<11K), low-field (H<1T) pseudophase transition boundary separates a partially antiferromagnetically ordered phase from the
Neutron scattering experiments at the magnetic vacancy percolation threshold concentration, x_v, using the random-field Ising crystal Fe(0.76)Zn(0.24)F2, show stability of the transition to long-range order up to fields H=6.5 T. The observation of th
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting qua
We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negativ
We describe a percolation problem on lattices (graphs, networks), with edge weights drawn from disorder distributions that allow for weights (or distances) of either sign, i.e. including negative weights. We are interested whether there are spanning