ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise2Sim -- Similarity-based Self-Learning for Image Denoising

235   0   0.0 ( 0 )
 نشر من قبل Chuang Niu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite its best performance in image denoising, the supervised deep denoising methods require paired noise-clean data, which are often unavailable. To address this challenge, Noise2Noise was designed based on the fact that paired noise-clean images can be replaced by paired noise-noise images that are easier to collect. However, in many scenarios the collection of paired noise-noise images is still impractical. To bypass labeled images, Noise2Void methods predict masked pixels from their surroundings with single noisy images only and give improved denoising results that still need improvements. An observation on classic denoising methods is that non-local mean (NLM) outcomes are typically superior to locally denoised results. In contrast, Noise2Void and its variants do not utilize self-similarities in an image as the NLM-based methods do. Here we propose Noise2Sim, an NLM-inspired self-learning method for image denoising. Specifically, Noise2Sim leverages the self-similarity of image pixels to train the denoising network, requiring single noisy images only. Our theoretical analysis shows that Noise2Sim tends to be equivalent to Noise2Noise under mild conditions. To efficiently manage the computational burden for globally searching similar pixels, we design a two-step procedure to provide data for Noise2Sim training. Extensive experiments demonstrate the superiority of Noise2Sim on common benchmark datasets.



قيم البحث

اقرأ أيضاً

Memorization in over-parameterized neural networks could severely hurt generalization in the presence of mislabeled examples. However, mislabeled examples are hard to avoid in extremely large datasets collected with weak supervision. We address this problem by reasoning counterfactually about the loss distribution of examples with uniform random labels had they were trained with the real examples, and use this information to remove noisy examples from the training set. First, we observe that examples with uniform random labels have higher losses when trained with stochastic gradient descent under large learning rates. Then, we propose to model the loss distribution of the counterfactual examples using only the network parameters, which is able to model such examples with remarkable success. Finally, we propose to remove examples whose loss exceeds a certain quantile of the modeled loss distribution. This leads to On-the-fly Data Denoising (ODD), a simple yet effective algorithm that is robust to mislabeled examples, while introducing almost zero computational overhead compared to standard training. ODD is able to achieve state-of-the-art results on a wide range of datasets including real-world ones such as WebVision and Clothing1M.
We extend first-order model agnostic meta-learning algorithms (including FOMAML and Reptile) to image segmentation, present a novel neural network architecture built for fast learning which we call EfficientLab, and leverage a formal definition of th e test error of meta-learning algorithms to decrease error on out of distribution tasks. We show state of the art results on the FSS-1000 dataset by meta-training EfficientLab with FOMAML and using Bayesian optimization to infer the optimal test-time adaptation routine hyperparameters. We also construct a small benchmark dataset, FP-k, for the empirical study of how meta-learning systems perform in both few- and many-shot settings. On the FP-k dataset, we show that meta-learned initializations provide value for canonical few-shot image segmentation but their performance is quickly matched by conventional transfer learning with performance being equal beyond 10 labeled examples. Our code, meta-learned model, and the FP-k dataset are available at https://github.com/ml4ai/mliis .
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising met hod by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on $mathcal{H}$-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.
Active Learning methods create an optimized labeled training set from unlabeled data. We introduce a novel Online Active Deep Learning method for Medical Image Analysis. We extend our MedAL active learning framework to present new results in this pap er. Our novel sampling method queries the unlabeled examples that maximize the average distance to all training set examples. Our online method enhances performance of its underlying baseline deep network. These novelties contribute significant performance improvements, including improving the models underlying deep network accuracy by 6.30%, using only 25% of the labeled dataset to achieve baseline accuracy, reducing backpropagated images during training by as much as 67%, and demonstrating robustness to class imbalance in binary and multi-class tasks.
Recent work for image captioning mainly followed an extract-then-generate paradigm, pre-extracting a sequence of object-based features and then formulating image captioning as a single sequence-to-sequence task. Although promising, we observed two pr oblems in generated captions: 1) content inconsistency where models would generate contradicting facts; 2) not informative enough where models would miss parts of important information. From a causal perspective, the reason is that models have captured spurious statistical correlations between visual features and certain expressions (e.g., visual features of long hair and woman). In this paper, we propose a dependent multi-task learning framework with the causal intervention (DMTCI). Firstly, we involve an intermediate task, bag-of-categories generation, before the final task, image captioning. The intermediate task would help the model better understand the visual features and thus alleviate the content inconsistency problem. Secondly, we apply Pearls do-calculus on the model, cutting off the link between the visual features and possible confounders and thus letting models focus on the causal visual features. Specifically, the high-frequency concept set is considered as the proxy confounders where the real confounders are inferred in the continuous space. Finally, we use a multi-agent reinforcement learning (MARL) strategy to enable end-to-end training and reduce the inter-task error accumulations. The extensive experiments show that our model outperforms the baseline models and achieves competitive performance with state-of-the-art models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا