ﻻ يوجد ملخص باللغة العربية
It is known that the Frank-Wolfe (FW) algorithm, which is affine-covariant, enjoys accelerated convergence rates when the constraint set is strongly convex. However, these results rely on norm-dependent assumptions, usually incurring non-affine invariant bounds, in contradiction with FWs affine-covariant property. In this work, we introduce new structural assumptions on the problem (such as the directional smoothness) and derive an affine invariant, norm-independent analysis of Frank-Wolfe. Based on our analysis, we propose an affine invariant backtracking line-search. Interestingly, we show that typical backtracking line-searches using smoothness of the objective function surprisingly converge to an affine invariant step size, despite using affine-dependent norms in the step sizes computation. This indicates that we do not necessarily need to know the sets structure in advance to enjoy the affine-invariant accelerated rate.
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper
In this paper, we propose approximate Frank-Wolfe (FW) algorithms to solve convex optimization problems over graph-structured support sets where the textit{linear minimization oracle} (LMO) cannot be efficiently obtained in general. We first demonstr
We present and analyze a new generalized Frank-Wolfe method for the composite optimization problem $(P):{min}_{xinmathbb{R}^n}; f(mathsf{A} x) + h(x)$, where $f$ is a $theta$-logarithmically-homogeneous self-concordant barrier, $mathsf{A}$ is a linea
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear c
The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity ga