Astronomical Image Quality Prediction based on Environmental and Telescope Operating Conditions


الملخص بالإنكليزية

Intelligent scheduling of the sequence of scientific exposures taken at ground-based astronomical observatories is massively challenging. Observing time is over-subscribed and atmospheric conditions are constantly changing. We propose to guide observatory scheduling using machine learning. Leveraging a 15-year archive of exposures, environmental, and operating conditions logged by the Canada-France-Hawaii Telescope, we construct a probabilistic data-driven model that accurately predicts image quality. We demonstrate that, by optimizing the opening and closing of twelve vents placed on the dome of the telescope, we can reduce dome-induced turbulence and improve telescope image quality by (0.05-0.2 arc-seconds). This translates to a reduction in exposure time (and hence cost) of $sim 10-15%$. Our study is the first step toward data-based optimization of the multi-million dollar operations of current and next-generation telescopes.

تحميل البحث