ﻻ يوجد ملخص باللغة العربية
To constrain the emission mechanisms responsible for generating the energy powering the active galactic nuclei (AGN) and their host galaxies, it is essential to disentangle the contributions from both as a function of wavelength. Here we introduce a state-of-the-art AGN radio-to-X-ray spectral energy distribution fitting model (ARXSED). ARXSED uses multiple components to replicate the emission from the AGN and their hosts. At radio wavelengths, ARXSED accounts for radiation from the radio structures (e.g., lobes,jets). At near-infrared to far-infrared wavelengths, ARXSED combines a clumpy medium and a homogeneous disk to account for the radiation from the torus. At the optical-UV and X-ray, ARXSED accounts for the emission from the accretion disk. An underlying component from radio to UV wavelengths accounts for the emission from the host galaxy. Here we present the results of ARXSED fits to the panchromatic SEDs of 20 radio-loud quasars from the 3CRR sample at $1<zlesssim2$. We find that a single power-law is unable to fit the radio emission when compact radio structures (core, hot spots) are present. We find that the non-thermal emission from the quasars radio structures contributes significantly ($>70%$) to the submm luminosity in half the sample, impacting the submm-based star formation rate estimates. We present the median intrinsic SED of the radio-loud quasars at $z>1$ and find that the median SED of cite{Elvis1994} is unable to describe the SED of the radio-selected AGN at $z>1$. The AGN torus and accretion disk parameters inferred from our fitting technique agree with those in the literature for similar samples. We find that the orientation of the torus/accretion disk does not line up with the inclination of the radio jets in our sample.
The radio source 1146+596 is hosted by an elliptical/S0 galaxy NGC,3894, with a low-luminosity active nucleus. The radio structure is compact, suggesting a very young age of the jets in the system. Recently, the source has been confirmed as a high-en
We present the study on the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS, FIRST catalogs and XMM-Newton archives. A sample of radio-quiet SDSS quasars without FIRST radio detection is also asse
In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux-densities has shown that accretion
Radio-loud Active Galactic Nuclei at z~2-4 are typically located in dense environments and their host galaxies are among the most massive systems at those redshifts, providing key insights for galaxy evolution. Finding radio-loud quasars at the highe
Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z < 1. The far-infrared (FIR, 70-500 micron) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared S