ﻻ يوجد ملخص باللغة العربية
The study of biological processes can greatly benefit from tools that automatically predict gene functions or directly cluster genes based on shared functionality. Existing data mining methods predict protein functionality by exploiting data obtained from high-throughput experiments or meta-scale information from public databases. Most existing prediction tools are targeted at predicting protein functions that are described in the gene ontology (GO). However, in many cases biologists wish to discover functionally related genes for which GO terms are inadequate. In this paper, we introduce a rich set of features and use them in conjunction with semisupervised learning approaches in order to expand an initial set of seed genes to a larger cluster of functionally related genes. Among all the semi-supervised methods that were evaluated, the framework of learning with positive and unlabeled examples (LPU) is shown to be especially appropriate for mining functionally related genes. When evaluated on experimentally validated benchmark data, the LPU approaches1 significantly outperform a standard supervised learning algorithm as well as an established state-of-the-art method. Given an initial set of seed genes, our best performing approach could be used to mine functionally related genes in a wide range of organisms.
While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-
We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-sup
Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many
The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher models weights as the exponential moving average of a student models weights and minimizes the
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor