ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2019muj -- a well-observed Type Iax supernova that bridges the luminosity gap of the class

80   0   0.0 ( 0 )
 نشر من قبل Barnabas Barna
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present early-time ($t < +50$ days) observations of SN 2019muj (= ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from $sim$5 days before maximum light ($t_{max}(B)$ on $58707.8$ MJD) and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light curve peaks at 1.05 $times$ 10$^{42}$ erg s$^{-1}$ and indicates that only 0.031 $M_odot$ of $^{56}$Ni was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of $M_{V}$ = -16.4 mag. The estimated date of explosion is $t_0 = 58698.2$ MJD and implies a short rise time of $t_{rise}$ = 9.6 days in $B$-band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.



قيم البحث

اقرأ أيضاً

86 - M. R. Magee 2016
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of M$_r$ = -17.27 $pm$ 0.07, and a ($Delta m_{15})_r$ = 0.69 $pm$ 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ~0.2 M$_{odot}$ of material containing ~0.07 M$_{odot}$ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that $lesssim$0.6 M_sun of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
139 - Mridweeka Singh 2017
We present optical photometric (upto $sim$410 days since $B$$_{max}$) and spectroscopic (upto $sim$157 days since $B$$_{max}$) observations of a Type Iax supernova (SN) 2014dt located in M61. SN 2014dt is one of the brightest and closest (D $sim$ 20 Mpc) discovered Type Iax SN. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of $M$$_B$ $sim$-18.13$pm$0.04 mag with $Delta m_{15}$ $sim$1.35$pm 0.06$ mag. The early spectra of SN 2014dt are similar to other Type Iax SNe, whereas the nebular spectrum at 157 days is dominated by narrow emission features with less blending as compared to SNe 2008ge and 2012Z. The ejecta velocities are between 5000 to 1000 km sec$^{-1}$ which also confirms the low energy budget of Type Iax SN 2014dt as compared to normal Type Ia SNe. Using the peak bolometric luminosity of SN 2005hk we estimate $^{56}$Ni mass of $sim$0.14 M$_{odot}$ and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of $^{56}$Ni would have been synthesized in the explosion of SN 2014dt.
We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r = 22.48+/-0.11 mag. SN 2019gsc reached a peak luminosity of only M_g = -13.58 +/- 0.15 mag, and is characterised with a post-maximum decline rate Delta(m_15)_g = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M_g = -13.89 +/- 0.14 mag at peak and Delta(m_15)_g = 1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, about 3,000 km/s, and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of 0.003 +/- 0.001 Msol of nickel. The explosion parameters, M_ej = 0.13 Msol and E_k = 12 x 10E48 erg, are also similar to those inferred for SN 2008ha. We estimate a sub-solar oxygen abundance for the host galaxy of SN 2019gsc, (12 + log10(O/H) = 8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our dataset of SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae.
PTF11iqb was initially classified as a TypeIIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the narrow emission weakened quickly and the spectrum morphed to resemble those of Types II-L and II-P. At late times, Halpha emission exhibited a complex, multipeaked profile reminiscent of SN1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN~1998S, although with weaker interaction with circumstellar material (CSM) at early times, and stronger CSM interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for weak CSM interaction added to the light curve of a normal SN~II-P. This plateau requires that the progenitor had an extended H envelope like a red supergiant, consistent with the slow progenitor wind speed indicated by narrow emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum --- meaning that the presence of such WR features in an early SN spectrum does not necessarily indicate a WR-like progenitor. [abridged] Overall, PTF11iqb bridges SNe~IIn with weaker pre-SN mass loss seen in SNe II-L and II-P, implying a continuum between these types.
Low-luminosity type II supernovae (LL SNe~II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN,2016aqf, a LL SN~II with extensive spectral and photometric coverage. We measure a $V$-band peak magnitude of $-14.58$,mag, a plateau duration of $sim$100,days, and an inferred $^{56}$Ni mass of $0.008 pm 0.002$,msun. The peak bolometric luminosity, L$_{rm bol} approx 10^{41.4}$,erg,s$^{-1}$, and its spectral evolution is typical of other SNe in the class. Using our late-time spectra, we measure the [ion{O}{i}] $lambdalambda6300, 6364$ lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 $pm$ 3,msun. Our extensive late-time spectral coverage of the [ion{Fe}{ii}] $lambda7155$ and [ion{Ni}{ii}] $lambda7378$ lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$, and argue that the best epochs to measure the ratio are at $sim$200 -- 300,days after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve and spectral parameters, in search of trends which might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them and/or primordial contamination in the measured abundance ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا