ﻻ يوجد ملخص باللغة العربية
We present early-time ($t < +50$ days) observations of SN 2019muj (= ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from $sim$5 days before maximum light ($t_{max}(B)$ on $58707.8$ MJD) and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light curve peaks at 1.05 $times$ 10$^{42}$ erg s$^{-1}$ and indicates that only 0.031 $M_odot$ of $^{56}$Ni was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of $M_{V}$ = -16.4 mag. The estimated date of explosion is $t_0 = 58698.2$ MJD and implies a short rise time of $t_{rise}$ = 9.6 days in $B$-band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the
We present optical photometric (upto $sim$410 days since $B$$_{max}$) and spectroscopic (upto $sim$157 days since $B$$_{max}$) observations of a Type Iax supernova (SN) 2014dt located in M61. SN 2014dt is one of the brightest and closest (D $sim$ 20
We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r
PTF11iqb was initially classified as a TypeIIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the narrow emission weakened quickly and the spectrum morphed to resemble those of Types II-L and
Low-luminosity type II supernovae (LL SNe~II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN,2016aqf, a LL SN~II with extensive spectral and photometric coverage. We