ﻻ يوجد ملخص باللغة العربية
We consider two fundamental long-standing problems in quantum chromodynamics (QCD): the origin of color confinement and structure of a true vacuum and color singlet quantum states. There is a common belief that resolution to these problems needs a knowledge of a strict non-perturbative quantum Yang-Mills theory and new ideas. Our principal idea in resolving these problems is that structure of color confinement and color singlet quantum states must be determined by a Weyl symmetry which is an intrinsic symmetry of the Yang-Mills gauge theory, and by properties of a selected class of solutions satisfying special requirements. Following this idea we construct for the first time a space of color singlet one particle quantum states for primary gluons and quarks and reveal the structure of color confinement in quantum Yang-Mills theory. As an application we demonstrate formation of physical observables in a pure QCD, pure glueballs.
A microscopic description of vacuum structure and color singlet quantum states in Yang-Mills theory is presented. Our approach is based on an idea that classical stationary solutions defining a Hilbert space of one particle quantum states possess qua
Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge
In this work, we extend the construction of dual color decomposition in Yang-Mills theory to one-loop level, i.e., we show how to write one-loop integrands in Yang-Mills theory to the dual DDM-form and the dual trace-form. In dual forms, integrands a
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi
We present an exploratory numerical study on the lattice of the color structure of the wave functionals of the SU(3) Yang-Mills theory in the presence of a $qbar q$ static pair. In a spatial box with periodic boundary conditions we discuss the fact t