ترغب بنشر مسار تعليمي؟ اضغط هنا

A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds

152   0   0.0 ( 0 )
 نشر من قبل Takashi Yamakawa
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent seminal work, Bitansky and Shmueli (STOC 20) gave the first construction of a constant round zero-knowledge argument for NP secure against quantum attacks. However, their construction has several drawbacks compared to the classical counterparts. Specifically, their construction only achieves computational soundness, requires strong assumptions of quantum hardness of learning with errors (QLWE assumption) and the existence of quantum fully homomorphic encryption (QFHE), and relies on non-black-box simulation. In this paper, we resolve these issues at the cost of weakening the notion of zero-knowledge to what is called $epsilon$-zero-knowledge. Concretely, we construct the following protocols: - We construct a constant round interactive proof for NP that satisfies statistical soundness and black-box $epsilon$-zero-knowledge against quantum attacks assuming the existence of collapsing hash functions, which is a quantum counterpart of collision-resistant hash functions. Interestingly, this construction is just an adapted version of the classical protocol by Goldreich and Kahan (JoC 96) though the proof of $epsilon$-zero-knowledge property against quantum adversaries requires novel ideas. - We construct a constant round interactive argument for NP that satisfies computational soundness and black-box $epsilon$-zero-knowledge against quantum attacks only assuming the existence of post-quantum one-way functions. At the heart of our results is a new quantum rewinding technique that enables a simulator to extract a committed message of a malicious verifier while simulating verifiers internal state in an appropriate sense.



قيم البحث

اقرأ أيضاً

We investigate the existence of constant-round post-quantum black-box zero-knowledge protocols for $mathbf{NP}$. As a main result, we show that there is no constant-round post-quantum black-box zero-knowledge argument for $mathbf{NP}$ unless $mathbf{ NP}subseteq mathbf{BQP}$. As constant-round black-box zero-knowledge arguments for $mathbf{NP}$ exist in the classical setting, our main result points out a fundamental difference between post-quantum and classical zero-knowledge protocols. Combining previous results, we conclude that unless $mathbf{NP}subseteq mathbf{BQP}$, constant-round post-quantum zero-knowledge protocols for $mathbf{NP}$ exist if and only if we use non-black-box techniques or relax certain security requirements such as relaxing standard zero-knowledge to $epsilon$-zero-knowledge. Additionally, we also prove that three-round and public-coin constant-round post-quantum black-box $epsilon$-zero-knowledge arguments for $mathbf{NP}$ do not exist unless $mathbf{NP}subseteq mathbf{BQP}$.
Virtual black-box obfuscation is a strong cryptographic primitive: it encrypts a circuit while maintaining its full input/output functionality. A remarkable result by Barak et al. (Crypto 2001) shows that a general obfuscator that obfuscates classica l circuits into classical circuits cannot exist. A promising direction that circumvents this impossibility result is to obfuscate classical circuits into quantum states, which would potentially be better capable of hiding information about the obfuscated circuit. We show that, under the assumption that learning-with-errors (LWE) is hard for quantum computers, this quantum variant of virtual black-box obfuscation of classical circuits is generally impossible. On the way, we show that under the presence of dependent classical auxiliary input, even the small class of classical point functions cannot be quantum virtual black-box obfuscated.
We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of *constant-round* post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption. Along the way, we develop the following cryptographic primitives that may be of independent interest: 1. A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys. 2. Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky encryption for relations computable by quantum circuits. To enable this, we develop a new straight-line non-black-box simulation technique against *parallel* verifiers that does not clone the adversarys state. This forms the heart of our technical contribution and may also be relevant to the classical setting. 3. A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a quantum di stinguishing algorithm can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O~(Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QS(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.
In a recent breakthrough, Mahadev constructed a classical verification of quantum computation (CVQC) protocol for a classical client to delegate decision problems in BQP to an untrusted quantum prover under computational assumptions. In this work, we explore further the feasibility of CVQC with the more general sampling problems in BQP and with the desirable blindness property. We contribute affirmative solutions to both as follows. (1) Motivated by the sampling nature of many quantum applications (e.g., quantum algorithms for machine learning and quantum supremacy tasks), we initiate the study of CVQC for quantum sampling problems (denoted by SampBQP). More precisely, in a CVQC protocol for a SampBQP problem, the prover and the verifier are given an input $xin {0,1}^n$ and a quantum circuit $C$, and the goal of the classical client is to learn a sample from the output $z leftarrow C(x)$ up to a small error, from its interaction with an untrusted prover. We demonstrate its feasibility by constructing a four-message CVQC protocol for SampBQP based on the quantum Learning With Error assumption. (2) The blindness of CVQC protocols refers to a property of the protocol where the prover learns nothing, and hence is blind, about the clients input. It is a highly desirable property that has been intensively studied for the delegation of quantum computation. We provide a simple yet powerful generic compiler that transforms any CVQC protocol to a blind one while preserving its completeness and soundness errors as well as the number of rounds. Applying our compiler to (a parallel repetition of) Mahadevs CVQC protocol for BQP and our CVQC protocol for SampBQP yields the first constant-round blind CVQC protocol for BQP and SampBQP respectively, with negligible completeness and soundness errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا