ﻻ يوجد ملخص باللغة العربية
We present analysis of the timing noise in PSR J1733-3716, which combines data from Parkes 64-m radio telescope and nearly 15 years of timing data obtained from the Nanshan 25-m radio telescope. The variations in the spin frequency and frequency derivative are determined. The fluctuation in the spin frequency is obvious with an amplitude of 1.94(7)*10 -9 Hz. Variations of the integrated profile at 1369 MHz are detected with the changes occur in the relative peak intensity from the right profile component. From analysis of the single pulse data at 1382 MHz, we detect weak emission states that account for 63% of the whole data, and its duration distribution can be fitted with a power law. The pulsar also exhibits strong emission states, during which the emission shows multiple modes. This includes the normal mode, left mode and the right mode, with the time scales spanning between one and seventeen pulse periods. Such short term variability in pulses contributes to the variation of the integrated profile. Examination of the correlations between the spin parameters and the integrated profiles shows likelihood of a random distribution, which reveals that there is probably no obvious relationship between spin-down rate variations and changes of emission in this pulsar.
Timing analysis of PSR J1705$-$1906 using data from Nanshan 25-m and Parkes 64-m radio telescopes, which span over fourteen years, shows that the pulsar exhibits significant proper motion, and rotation instability. We updated the astrometry parameter
The double pulsar (PSR J0737-3039A/B) provides some of the most stringent tests of general relativity (GR) and its alternatives. The success of this system in tests of GR is largely due to the high-precision, long-term timing of its recycled-pulsar m
PSR J1813-1749 is one of the most energetic rotation-powered pulsars known, producing a pulsar wind nebula (PWN) and gamma-ray and TeV emission, but whose spin period is only measurable in X-ray. We present analysis of two Chandra datasets that are s
PSR J0537-6910, also known as the Big Glitcher, is the most prolific glitching pulsar known, and its spin-induced pulsations are only detectable in X-ray. We present results from analysis of 2.7 years of NICER timing observations, from 2017 August to
We present timing solutions and spin properties of the young pulsar PSR B0540-69 from analysis of 15.8 yr of data from the Rossi X-Ray Timing Explorer. We perform a partially phase-coherent timing analysis in order to mitigate the pronounced effects