ﻻ يوجد ملخص باللغة العربية
Many classification techniques when the data are curves or functions have been recently proposed. However, the presence of misaligned problems in the curves can influence the performance of most of them. In this paper, we propose a model-based approach for simultaneous curve registration and classification. The method is proposed to perform curve classification based on a functional logistic regression model that relies on both scalar variables and functional variables, and to align curves simultaneously via a data registration model. EM-based algorithms are developed to perform maximum likelihood inference of the proposed models. We establish the identifiability results for curve registration model and investigate the asymptotic properties of the proposed estimation procedures. Simulation studies are conducted to demonstrate the finite sample performance of the proposed models. An application of the hyoid bone movement data from stroke patients reveals the effectiveness of the new models.
A two-level group-specific curve model is such that the mean response of each member of a group is a separate smooth function of a predictor of interest. The three-level extension is such that one grouping variable is nested within another one, and h
The clustering for functional data with misaligned problems has drawn much attention in the last decade. Most methods do the clustering after those functional data being registered and there has been little research using both functional and scalar v
During the last decades, many methods for the analysis of functional data including classification methods have been developed. Nonetheless, there are issues that have not been adressed satisfactorily by currently available methods, as, for example,
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covar
A fast nonparametric procedure for classifying functional data is introduced. It consists of a two-step transformation of the original data plus a classifier operating on a low-dimensional hypercube. The functional data are first mapped into a finite