ﻻ يوجد ملخص باللغة العربية
In this work we formulate and formally characterize group fairness as a multi-objective optimization problem, where each sensitive group risk is a separate objective. We propose a fairness criterion where a classifier achieves minimax risk and is Pareto-efficient w.r.t. all groups, avoiding unnecessary harm, and can lead to the best zero-gap model if policy dictates so. We provide a simple optimization algorithm compatible with deep neural networks to satisfy these constraints. Since our method does not require test-time access to sensitive attributes, it can be applied to reduce worst-case classification errors between outcomes in unbalanced classification problems. We test the proposed methodology on real case-studies of predicting income, ICU patient mortality, skin lesions classification, and assessing credit risk, demonstrating how our framework compares favorably to other approaches.
Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of `what-if scenarios. Most current approaches optimize a collapsed, weighted
Hyperparameter optimization (HPO) is increasingly used to automatically tune the predictive performance (e.g., accuracy) of machine learning models. However, in a plethora of real-world applications, accuracy is only one of the multiple -- often conf
AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. They often combine techniques from many different sub-fields of machine learning in order to find a model or set of models that optimize a u
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unrel
Both feature selection and hyperparameter tuning are key tasks in machine learning. Hyperparameter tuning is often useful to increase model performance, while feature selection is undertaken to attain sparse models. Sparsity may yield better model in