ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory:a relaxation time approach

227   0   0.0 ( 0 )
 نشر من قبل Victor Roy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Chapman-Enskog like gradient expansion of the single-particle distribution function truncated at second order. In the first order, the transport coefficients are independent of the magnetic field. In the second-order, new transport coefficients that couple magnetic field and the dissipative quantities appear which are different from those obtained in the 14-moment approximation cite{Denicol:2018rbw} in the presence of a magnetic field. However, in the limit of the weak magnetic field, the form of these equations are identical to the 14-moment approximation albeit with a different values of these coefficients. We also derive the anisotropic transport coefficients in the Navier-Stokes limit.



قيم البحث

اقرأ أيضاً

Here we derive the relativistic resistive dissipative second-order magnetohydrodynamic evolution equations using the Boltzmann equation, thus extending our work from the previous paper href{https://link.springer.com/article/10.1007/JHEP03(2021)216}{J HEP 03 (2021) 216} where we considered the non-resistive limit. We solve the Boltzmann equation for a system of particles and antiparticles using the relaxation time approximation and the Chapman-Enskog like gradient expansion for the off-equilibrium distribution function, truncating beyond second-order. In the first order, the bulk and shear stress are independent of the electromagnetic field, however, the diffusion current, shows a dependence on the electric field. In the first order, the transport coefficients~(shear and bulk stress) are shown to be independent of the electromagnetic field. The diffusion current, however, shows a dependence on the electric field. In the second-order, the new transport coefficients that couple electromagnetic field with the dissipative quantities appear, which are different from those obtained in the 14-moment approximation~cite{Denicol:2019iyh} in the presence of the electromagnetic field. Also we found out the various components of conductivity in this case.
We derive the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be non-resistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing previous results for the structure of the first-order transport coefficients. Finally, we truncate the system of equations for the irreducible moments using the 14-moment approximation, deriving the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics. We also give expressions for the new transport coefficients appearing due to the coupling of the magnetic field to the dissipative quantities.
We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we on ly considered the non-resistive limit, to the case of finite electric conductivity. This requires keeping terms proportional to the electric field $E^mu$ in the equations of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to Ohms law, while the coefficients of electrical conductivity and charge diffusion are related by a type of Wiedemann-Franz law.
We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggest ed by the Entropy Production Principle; the evolution equation is obtained by the method of moments, and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmanns equation in 0+1 dimensions and show that it tracks kinetic theory better than second order fluid dynamics.
112 - I. Bouras , A. El , O. Fochler 2012
Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between proj ectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا