ﻻ يوجد ملخص باللغة العربية
We report the results of ultraviolet (UV) and optical photometric and spectroscopic analysis of the tidal disruption event (TDE) AT2019qiz. Our follow-up observations started $<$10 days after the source began to brighten in the optical and lasted for a period of six months. Our late-time host-dominated spectrum indicates that the host galaxy likely harbors a weak active galactic nucleus. The initial {it Hubble Space Telescope (HST)} spectrum of AT2019qiz exhibits an iron and low-ionization broad absorption line (FeLoBAL) system that is seen for the first time in a TDE. This spectrum also bears a striking resemblance to that of Gaia16apd, a superluminous supernova. Our observations provide insights into the outflow properties in TDEs and show evidence for a connection between TDEs and engine-powered supernovae at early phase, as originally suggested in Metzger & Stone (2016). In a time frame of 50 days, the UV spectra of AT2019qiz started to resemble previous TDEs with only high-ionization BALs. The change in UV spectral signatures is accompanied by a decrease in the outflow velocity, which began at $15,000$ km s$^{-1}$ and decelerated to $sim10,000$ km s$^{-1}$. A similar evolution in the H$alpha$ emission line width further supports the speculation that the broad Balmer emission lines are formed in TDE outflows. In addition, we detect narrow absorption features on top of the FeLoBAL signatures in the early HST UV spectrum of AT2019qiz. The measured HI column density corresponds to a Lyman-limit system whereas the metal absorption lines, such as NV, CIV, FeII, and MgII, are likely probing the circumnuclear gas and interstellar medium in the host galaxy.
At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spec
We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning $55-560$ days post-disruption. We find that the p
We present late-time optical spectroscopy and X-ray, UV, and optical photometry of the nearby ($d=214$ Mpc, $z=0.0479$) tidal disruption event (TDE) ASASSN-15oi. The optical spectra span 450 days after discovery and show little remaining transient em
We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z=0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; it peaks at a luminosity of $L approx 10^{
We present ground-based and textit{Swift} observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The lightcurve of the object peaked at absolute $M_g=-17.2$