ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT2019qiz

162   0   0.0 ( 0 )
 نشر من قبل Tiara Hung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of ultraviolet (UV) and optical photometric and spectroscopic analysis of the tidal disruption event (TDE) AT2019qiz. Our follow-up observations started $<$10 days after the source began to brighten in the optical and lasted for a period of six months. Our late-time host-dominated spectrum indicates that the host galaxy likely harbors a weak active galactic nucleus. The initial {it Hubble Space Telescope (HST)} spectrum of AT2019qiz exhibits an iron and low-ionization broad absorption line (FeLoBAL) system that is seen for the first time in a TDE. This spectrum also bears a striking resemblance to that of Gaia16apd, a superluminous supernova. Our observations provide insights into the outflow properties in TDEs and show evidence for a connection between TDEs and engine-powered supernovae at early phase, as originally suggested in Metzger & Stone (2016). In a time frame of 50 days, the UV spectra of AT2019qiz started to resemble previous TDEs with only high-ionization BALs. The change in UV spectral signatures is accompanied by a decrease in the outflow velocity, which began at $15,000$ km s$^{-1}$ and decelerated to $sim10,000$ km s$^{-1}$. A similar evolution in the H$alpha$ emission line width further supports the speculation that the broad Balmer emission lines are formed in TDE outflows. In addition, we detect narrow absorption features on top of the FeLoBAL signatures in the early HST UV spectrum of AT2019qiz. The measured HI column density corresponds to a Lyman-limit system whereas the metal absorption lines, such as NV, CIV, FeII, and MgII, are likely probing the circumnuclear gas and interstellar medium in the host galaxy.



قيم البحث

اقرأ أيضاً

At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spec troscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass $approx 10^6$ M$_odot$, disrupting a star of $approx 1$ M$_odot$. Comprehensive UV, optical and X-ray data shows that the early optical emission is dominated by an outflow, with a luminosity evolution $L propto t^2$, consistent with a photosphere expanding at constant velocity ($gtrsim 2000$ km s$^{-1}$), and a line-forming region producing initially blueshifted H and He II profiles with $v=3000-10000$ km s$^{-1}$. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K.~D.~Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission -- the first time this connection has been observed in a TDE. The light curve rise begins $29 pm 2$ days before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at $approx 10^{41}$ erg s$^{-1}$. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.
We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning $55-560$ days post-disruption. We find that the p eak brightness of the radio emission increases until ~200 days and subsequently begins to decrease steadily. Using the standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA-ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of $approx 0.07c$, while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at $approx 5times 10^{48}$ erg thereafter. The ambient density traced by the outflow declines as $approx R^{-1.6}$ on a scale of $approx (1-4)times 10^{16}$ cm ($approx 6300-25000$ $R_s$), followed by a steeper decline to $approx 6times 10^{16}$ cm ($approx 37500$ $R_s$). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities ($Gamma=2$) the outflow requires an opening angle of $theta_japprox 2^circ$, which is narrow even by the standards of GRB jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from Type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.
We present late-time optical spectroscopy and X-ray, UV, and optical photometry of the nearby ($d=214$ Mpc, $z=0.0479$) tidal disruption event (TDE) ASASSN-15oi. The optical spectra span 450 days after discovery and show little remaining transient em ission or evolution after roughly 3 months. In contrast, the Swift and XMM-Newton observations indicate the presence of evolving X-ray emission and lingering thermal UV emission that is still present 600 days after discovery. The thermal component of the X-ray emission shows a unique, slow brightening by roughly an order of magnitude to become the dominant source of emission from the TDE at later times, while the hard component of the X-ray emission remains weak and relatively constant throughout the flare. The TDE radiated $(1.32pm0.06)times10^{51}$ ergs across all wavelengths, and the UV and optical emission is consistent with a power law decline and potentially indicative of a late-time shift in the power-law index that could be caused by a transition in the dominant emission mechanism.
We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z=0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; it peaks at a luminosity of $L approx 10^{ 44}$ erg s$^{-1}$; and the spectrum shows a persistent blackbody temperature $T gtrsim 20,000$ K with broad H I and He II emission. The lines are initially centered at zero velocity, but by 100 days the H I lines disappear while the He II develops a blueshift of $gtrsim 5,000$ km s$^{-1}$. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of $sim 10^{6.3} M_odot$. The host is another quiescent, Balmer-strong galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 days are among the deepest for a TDE at this phase.
We present ground-based and textit{Swift} observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The lightcurve of the object peaked at absolute $M_g=-17.2$ mag. The maximum bolometric luminosity (from optical and UV) was $L_p~simeq~(1.0,pm,0.15) times 10^{43}$ erg/s, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $L propto e^{-(t-t_0)/tau}$, where $t_0$=~57631.0 (MJD) and $tausimeq 15$ days. The X-ray shows a marginal detection at $L_X=2.4^{1.9}_{-1.1}times 10^{39}$ erg/s (textit{Swift} X-ray Telescope). No radio counterpart was detected down to 3$sigma$, providing upper limits for monochromatic radio luminosity of $ u L_{ u} < 2.3times10^{36}$ erg/s and $ u L_{ u}<1.7times 10^{37}$ erg/s (VLA, 6.1 and 22 GHz). The blackbody temperature, obtained from combined textit{Swift} UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and H$alpha$ emission lines, with an FWHM of about 14,000 km/s and 10,000 km/s respectively. He I lines are also detected at $lambdalambda$ 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of $sim$650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low luminosity events may have gone unnoticed in previous searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا