ﻻ يوجد ملخص باللغة العربية
Electron beam ion traps (EBIT) are ideal tools for both production and study of highly charged ions (HCI). In order to reduce their construction, maintenance, and operation costs we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar$^{16+}$ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e. g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe$^{24+}$, achieving an electron-energy resolving power of $E/Delta E > 1500$ at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating resonant photoexcitation of highly charged oxygen.
Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultra-high vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations cause
A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by
State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-gr
To provide spectroscopic data for lowly charged tungsten ions relevant to fusion research, this work focuses on the W8+ ion. Six visible spectra lines in the range of 420-660 nm are observed with a compact electron-beam ion trap in Shanghai. These li
We propose an ion trap configuration such that individual traps can be stacked together in a three dimensional simple cubic arrangement. The isolated trap as well as the extended array of ion traps are characterized for different locations in the lat