ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of calibration for the hybrid pixel detector with single photon counting in HEPS-BPIX

116   0   0.0 ( 0 )
 نشر من قبل Ye Ding Aye
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The calibration process for the hybrid array pixel detector designed for High Energy Photon Source in China, we called HEPS-BPIX, is presented in this paper. Based on the threshold scanning, the relationship between energy and threshold is quantified for the threshold calibration. For the threshold trimming, the precise algorithm basing on LDAC characteristic and fast algorithm basing on LDAC scanning are proposed in this paper to study the performance of the threshold DACs which will be applied to the pixel. The threshold dispersion has been reduced from 46.28 mV without algorithm to 6.78 mV with the precise algorithm, whereas it is 7.61 mV with fast algorithm. For the temperature from 5 to 60 , the threshold dispersion of precise algorithm varies in the range of about 5.69 mV, whereas it is about 33.21 mV with the fast algorithm which can be re-corrected to 1.49 mV. The measurement results show that the fast algorithm could get the applicable threshold dispersion for a silicon pixel module and take a shorter time, while the precise algorithm could get better threshold dispersion, but time consuming. The temperature dependence of the silicon pixel module noise is also studied to assess the detector working status. The minimum detection energy can be reduced about 0.83 keV at a 20 lower temperature.



قيم البحث

اقرأ أيضاً

The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consi sts of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (NDT). Because of the separation of detector and readout chip, different materials can be investigated and compared.
We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. Thi s SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illumination, then employs a photomultiplier tube into the TCSPC module to achieve photon-counting detection. By exploiting the time-resolved capabilities of TCSPC, we demodulate the spectrum-image-encoded signals, and then reconstruct high-quality full-color images in a single-round of measurement. Based on this scheme, the strategies such as single-step measurement, high-speed projection, and undersampling can further improve the imaging efficiency.
INTPIX4NA is an integration-type silicon-on-insulator pixel detector. This detector has a 14.1 x 8.7 mm^2 sensitive area, 425,984 (832 column x 512 row matrix) pixels and the pixel size is 17 x 17 um^2. This detector was developed for residual stress measurement using X-rays (the cos alpha method). The performance of INTPIX4NA was tested with the synchrotron beamlines of the Photon Factory (KEK), and the following results were obtained. The modulation transfer function, the index of the spatial resolution, was more than 50% at the Nyquist frequency (29.4 cycle/mm). The energy resolution analyzed from the collected charge counts is 35.3%--46.2% at 5.415 keV, 21.7%--35.6% at 8 keV, and 15.7%--19.4% at 12 keV. The X-ray signal can be separated from the noise even at a low energy of 5.415 keV at room temperature (approximately 25--27 degree Celsius). The maximum frame rate at which the signal quality can be maintained is 153 fps in the current measurement system. These results satisfy the required performance in the air and at room temperature (approximately 25--27 degree Celsius) condition that is assumed for the environment of the residual stress measurement.
143 - V.Chiochia , E.Alagoz , M.Swartz 2006
In this paper a detailed simulation of irradiated pixel sensors was used to investigate the effects of radiation damage on charge sharing and position determination. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. We show that charge sharing functions extracted from the simulation can be parameterized as a function of the inter-pixel position and used to improve the position determination. For sensors irradiated to Phi=5.9x10^14 n/cm^2 a position resolution below 15 um can be achieved after calibration.
149 - K. Abe , Y. Hayato , T. Iida 2013
Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics h ave been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT). In this context, we developed an in-situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a detector. The second part describes the modeling of the detector in our Monte Carlo simulation, including in particular the optical properties of its water target and their variability over time. Detailed studies on the water quality are also presented. As a result of this work, we achieved a precision sufficient for physics analysis over a wide energy range (from a few MeV to above a TeV). For example, the charge determination was understood at the 1% level, and the timing resolution was 2.1 nsec at the one-photoelectron charge level and 0.5 nsec at the 100-photoelectron charge level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا