ﻻ يوجد ملخص باللغة العربية
The Galactic interstellar turbulence affects the density distribution and star formation. We introduce a new method of measuring interstellar turbulent density spectra by using the dispersion measures (DMs) of a large sample of pulsars. Without the need of invoking multiple tracers, we obtain nonuniversal density spectra in the multi-phase interstellar medium over different ranges of length scales. By comparing the analytical structure function of DMs with the observationally measured one in different areas of sky, we find a shallow density spectrum arising from the supersonic turbulence in cold interstellar phases, and a Kolmogorov-like density spectrum in the diffuse warm ionized medium (WIM). Both spectra extend up to hundreds of pc. On larger scales, we for the first time identify a steep density spectrum in the diffuse WIM extending up to several kpc. Our results show that the DMs of pulsars can provide unique new information on the interstellar turbulence.
Recent Low Frequency Array (LOFAR) observations at 115-175 MHz of a field at medium Galactic latitudes (centered at the bright quasar 3C196) have shown striking filamentary structures in polarization that extend over more than 4 degrees across the sk
Submillimeter galaxies (SMGs) at $zgtrsim1$ are luminous in the far-infrared and have star-formation rates, SFR, of hundreds to thousands of solar masses per year. However, it is unclear whether they are true analogs of local ULIRGs or whether the mo
The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate
We investigate the number and type of pulsars that will be discovered with the low-frequency radio telescope LOFAR. We consider different search strategies for the Galaxy, for globular clusters and for other galaxies. We show that a 25-day all-sky Ga
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the ISM. Besides in their pure