ﻻ يوجد ملخص باللغة العربية
The astrometric sample of Gaia allows us to study the outermost Galactic disc, the halo and their interface. It is precisely at the very edge of the disc where the effects of external perturbations are expected to be the most noticeable. Our goal is to detect the kinematic substructure present in the halo and at the edge of the Milky Way (MW) disc, and provide observational constraints on their phase-space distribution. We download, one HEALpix at a time, the proper motion histogram of distant stars, to which we apply a Wavelet Transformation to reveal the significant overdensities. We then analyse the large coherent structures that appear in the sky. We reveal a sharp yet complex anticentre dominated by Monoceros (MNC) and the Anticentre Stream (ACS) in the north, which we find with an intensity comparable to the Magellanic clouds and the Sagittarius stream, and by MNC south and TriAnd at negative latitudes. Our method allows us to perform a morphological analysis of MNC and ACS, both spanning more than 100$^circ$ in longitude, and to provide a high purity sample of giants with which we track MNC down to latitudes as low as $sim$5$^circ$. Their colour-magnitude diagram is consistent with extended structures at a distance of $sim$10-11 kpc originated in the disc, with a very low ratio of RR Lyrae over M giants, and kinematics compatible with the rotation curve at those distances or only slightly slower. We present a precise characterisation of MNC and ACS, two previously known structures that our method reveals naturally, allowing us to detect them without limiting ourselves to a particular stellar type and, for the first time, using only kinematics. Our results allow future studies to model their chemo-dynamics and evolution, thus constraining some of the most influential processes that shaped the MW.
We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms
The outer regions of disc galaxies are becoming increasingly recognized as key testing sites for models of disc assembly and evolution. Important issues are the epoch at which the bulk of the stars in these regions formed and how discs grow radially
We present a detailed analysis of two fields located 26 kpc (~5 scalelengths) from the centre of M31. One field samples the major axis populations--the Outer Disc field--while the other is offset by ~18 and samples the Warp in the stellar disc. The C
We present the peculiar in-plane velocities derived from the LAMOST red clump stars, which are purified and separated by a novel approach into two groups with different ages. The samples are mostly contributed around the Galactic anti-centre directio
Using Hubble Space Telescope (HST) ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended HI disc. These observations reveal an elliptical di