ترغب بنشر مسار تعليمي؟ اضغط هنا

Lessons from the $B^{0,+}to K^{*0,+}mu^+mu^-$ angular analyses

72   0   0.0 ( 0 )
 نشر من قبل Marco Fedele
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an analysis within the Standard Model of $B^{0,+} to K^{*0,+} mu^+ mu^-$ decays in light of the recent measurements from the LHCb experiment, showing that new data strengthen the need for sizable hadronic contributions and correlations among them. We then extend our analysis to New Physics via the Standard Model Effective Theory, and carry out a state-of-the-art fit of available $b to s ell^+ ell^-$ data, including possible hadronic contributions. We find the case of a fully left-handed operator standing out as the simplest scenario with a significance of almost $6sigma$.



قيم البحث

اقرأ أيضاً

We analyse the results recently presented on the $B^{+} to K^{*+} mu^+ mu^-$ angular observables by the LHCb Collaboration which show indications for New Physics beyond the Standard Model. Within a model-independent analysis, we compare the fit resul ts with the corresponding results for the angular observables in $B^{0} to K^{*0} mu^+ mu^-$.
One of the main indications for New Physics in rare $B$-decays is deduced from the tension between experimental and Standard Model predictions of the angular analysis of the $B^0 to K^{*0} mu^+mu^-$ decay. There are however possible non-local hadroni c effects which in principle can also explain these tensions. In this work, we consider a statistical approach for differentiating the source of the tension in $B^0 to K^{*0} mu^+mu^-$ observables and we also investigate the prospects of such a comparison with future data from the LHCb experiment.
The angular distribution and differential branching fraction of the decay $B^{0} to K^{*0} mu^{+}mu^{-}$ are studied using a data sample, collected by the LHCb experiment in $pp$ collisions at $sqrt{s}=7,{rm TeV}$, corresponding to an integrated lumi nosity of $1.0,{rm fb}^{-1}$. Several angular observables are measured in bins of the dimuon invariant mass squared, $q^{2}$. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be $q_{0}^{2} = 4.9 pm 0.9 ,{rm GeV}^{2}/c^{4}$, where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.
A method to directly determine the Wilson coefficients for rare $bto s$ transitions using $B^0to K^{*0}mu^+mu^-$ decays in an unbinned maximum likelihood fit is presented. The method has several advantages compared to the conventional determination o f the Wilson coefficients from angular observables that are determined in bins of $q^2$, the square of the mass of the dimuon system. The method uses all experimental information in an optimal way and automatically accounts for experimental correlations. Performing pseudoexperiments, we show the improved sensitivity of the proposed method for the Wilson coefficients. We also demonstrate that it will be possible to use the method with the combined Run 1 and 2 data sample taken by the LHCb experiment.
The direct $C!P$ asymmetries of the decays $B^0 rightarrow K^{*0} mu^+ mu^-$ and $B^+ rightarrow K^{+} mu^+ mu^-$ are measured using $pp$ collision data corresponding to an integrated luminosity of 3.0$mbox{fb}^{-1}$ collected with the LHCb detector. The respective control modes $B^0 rightarrow J/psi K^{*0}$ and $B^+ rightarrow J/psi K^{+}$ are used to account for detection and production asymmetries. The measurements are made in several intervals of $mu^+ mu^-$ invariant mass squared, with the $phi(1020)$ and charmonium resonance regions excluded. Under the hypothesis of zero $C!P$ asymmetry in the control modes, the average values of the asymmetries are begin{align} {cal A}_{C!P}(B^0 rightarrow K^{*0} mu^+ mu^-) &= -0.035 pm 0.024 pm 0.003, cr {cal A}_{C!P}(B^+ rightarrow K^{+} mu^+ mu^-) &= phantom{-}0.012 pm 0.017 pm 0.001, end{align} where the first uncertainties are statistical and the second are due to systematic effects. Both measurements are consistent with the Standard Model prediction of small $C!P$ asymmetry in these decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا